
MathWorks™ Automotive Advisory Board
Control Algorithm Modeling Guidelines
Using MATLAB®, Simulink®, and Stateflow®

(Version 2.0)

How to Contact The MathWorks

www.mathworks.com Web
comp.soft-sys.matlab Newsgroup
www.mathworks.com/contact_TS.html Technical Support

suggest@mathworks.com Product enhancement suggestions
bugs@mathworks.com Bug reports
doc@mathworks.com Documentation error reports
service@mathworks.com Order status, license renewals, passcodes
info@mathworks.com Sales, pricing, and general information

508-647-7000 (Phone)

508-647-7001 (Fax)

The MathWorks, Inc.
3 Apple Hill Drive
Natick, MA 01760-2098
For contact information about worldwide offices, see the MathWorks Web site.

MathWorks™ Automotive Advisory Board Control Algorithm Modeling Guidelines Using
MATLAB®, Simulink®, and Stateflow® (Version 2.0)

© COPYRIGHT 2007–2009 by MathWorks™ Automotive Advisory Board
The software described in this document is furnished under a license agreement. The software may be used
or copied only under the terms of the license agreement. No part of this manual may be photocopied or
reproduced in any form without prior written consent from The MathWorks, Inc.

FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation
by, for, or through the federal government of the United States. By accepting delivery of the Program
or Documentation, the government hereby agrees that this software or documentation qualifies as
commercial computer software or commercial computer software documentation as such terms are used
or defined in FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014. Accordingly, the terms and
conditions of this Agreement and only those rights specified in this Agreement, shall pertain to and govern
the use, modification, reproduction, release, performance, display, and disclosure of the Program and
Documentation by the federal government (or other entity acquiring for or through the federal government)
and shall supersede any conflicting contractual terms or conditions. If this License fails to meet the
government’s needs or is inconsistent in any respect with federal procurement law, the government agrees
to return the Program and Documentation, unused, to The MathWorks, Inc.

Trademarks

MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See
www.mathworks.com/trademarks for a list of additional trademarks. Other product or brand
names may be trademarks or registered trademarks of their respective holders.

Patents

The MathWorks products are protected by one or more U.S. patents. Please see
www.mathworks.com/patents for more information.

Revision History
March 2009 Online only Release 2009a
September 2009 Online only Release 2009b

http://www.mathworks.com/trademarks
http://www.mathworks.com/patents

Contents

Introduction

1
Presentation of Guidelines Hosted by The
MathWorks . 1-2

Motivation . 1-3

Guideline Template . 1-4
Guideline ID . 1-5
Guideline Title . 1-5
Priority . 1-6
Scope . 1-7
MATLAB Versions . 1-8
Prerequisites . 1-8
Description . 1-8
Rationale . 1-9
Last Change . 1-10
Model Advisor Check . 1-10

Document Usage . 1-11

Naming Conventions

2
General Guidelines . 2-2

Model Content . 2-7

iii

Model Architecture

3
Simulink and Stateflow Partitioning 3-2

Subsystem Hierarchies . 3-14

J-MAAB Model Architecture Decomposition 3-21

Model Configuration Options

4
Model Configuration Options . 4-2

Simulink

5
Diagram Appearance . 5-2

Signals . 5-30

Block Usage . 5-38

Block Parameters . 5-60

Simulink Patterns . 5-67

iv Contents

Stateflow

6
Chart Appearance . 6-2

Stateflow Data and Operations . 6-20

Events . 6-39

Statechart Patterns . 6-43

Flowchart Patterns . 6-49

Recommendations for Automation Tools

A

Guideline Writing

B

Flowchart Reference

C

Background Information on Basic Blocks and
Signals

D
Basic Blocks . D-2

v

Signals and Signal Labels . D-3

MAAB Glossary

vi Contents

1

Introduction

• “Presentation of Guidelines Hosted by The MathWorks” on page 1-2

• “Motivation” on page 1-3

• “Guideline Template” on page 1-4

• “Document Usage” on page 1-11

1 Introduction

Presentation of Guidelines Hosted by The MathWorks
This presentation of the MathWorks™ Automotive Advisory Board (MAAB)
guidelines, Version 2.0, is based on the document, of the same title, authored
by the MAAB working group. In addition to the information included in the
original document, this presentation includes references to corresponding
Model Advisor MAAB checks that you can apply if you are licensed to use
Simulink® and Simulink® Verification and Validation™ software.

1-2

Motivation

Motivation
The MathWorks Automotive Advisory Board (MAAB) guidelines are
important for project success and teamwork—both in-house and when
cooperating with partners or subcontractors. Observing the guidelines is a
key prerequisite to achieving:

• Problem-free system integration

• Well-defined interfaces

• Uniform appearance of models, code, and documentation

• Reusable models

• Readable models

• Problem-free exchange of models

• A simple, effective process

• Professional documentation

• Understandable presentations

• Fast software changes

• Cooperation with subcontractors

• Successful transitions of research or predevelopment projects to product
development

1-3

1 Introduction

Guideline Template

In this section...

“Guideline ID” on page 1-5

“Guideline Title” on page 1-5

“Priority” on page 1-6

“Scope” on page 1-7

“MATLAB Versions” on page 1-8

“Prerequisites” on page 1-8

“Description” on page 1-8

“Rationale” on page 1-9

“Last Change” on page 1-10

“Model Advisor Check” on page 1-10

Guideline descriptions are documented, using the following template.
Companies that want to create additional guidelines are encouraged to use
the same template.

ID: Title XX_nnnn: Title of the guideline (unique, short)

Priority Mandatory, Strongly recommended, or Recommended

Scope MAAB, NA-MAAB, J-MAAB, Specific Company (for
optional local company usage)

MATLAB®

Versions
One of the following:
All
RX, RY, RZ
RX and earlier
RX and later
RX through RY

Prerequisites Links to guidelines, which are prerequisites to this
guideline (ID: Title)

1-4

Guideline Template

Description Description of the guideline (text, images)

Rationale Motivation for the guideline

Last
Change

Version number of last change

Model
Advisor
Check

Title of and link to the corresponding Model Advisor check,
if a check exists

Note The elements of this template are the minimum required items for
understanding and exchanging guidelines. You can add project or vendor
fields to this template as long as their meaning does not overlap with existing
fields. Such additions are encouraged if they help to integrate other guideline
templates and lead to a wider acceptance of the core template.

Guideline ID

• The guideline ID is built out of two lowercase letters (representing the
origin of the rule) and a four-digit number, separated by an underscore.

• Once a new guideline has an ID, the ID does not change.

• The ID is used for references to guidelines.

• The two letter prefixes na, jp, jc and eu are reserved for future MAAB
committee rules.

• Legacy prefixes, db, jm, hd, and ar, are reserved. The MAAB committee
will not use these prefixes for new rules.

• No new rules are to be written with these legacy prefixes.

Guideline Title

• The title should be a short, but unique description of the guidelines area of
application (for example, length of names)

• The title is used for the Prerequisites field and for custom checker tools.

• The title text should appear with a hyperlink that links to the guideline.

1-5

1 Introduction

Note The title should not be a redundant short description of the guidelines
content, because while the latter may change over time, the title should
remain stable.

Priority
Each guideline must be rated with one of the following priorities:

• Mandatory

• Strongly recommended

• Recommended

The priority describes the importance of the guideline and determines the
consequences of violations.

Mandatory Strongly
Recommended

Recommended

Definition

Guidelines that all
companies agree to that
are absolutely essential

Guidelines that all
companies conform to
100%

Guidelines that are
agreed upon to be
a good practice, but
legacy models preclude
a company from
conforming to the
guideline 100%

Models should conform
to these guidelines to
the greatest extent
possible; however,
100% compliance is not
required

Guidelines that are
recommended to
improve the appearance
of the model diagram,
but are not critical to
running the model

Guidelines where
conformance is
preferred, but not
required

Consequences: If the guideline is violated,

1-6

Guideline Template

Mandatory Strongly
Recommended

Recommended

Essential items are
missing

The model might not
work properly

The quality
and appearance
deteriorates

An adverse effect
on maintainability,
portability, and
reusability might occur

The appearance does
not conform with other
projects

Waiver Policy: If the guideline is intentionally ignored,

The reasons must be
documented

Scope
The scope of a guideline may be set to one of the following:

Scope Description

MAAB (MathWorks Automotive
Advisory Board)

A group of automotivemanufacturers
and suppliers that work closely
together with The MathWorks™.
MAAB includes the subgroups
J-MAAB and NA-MAAB.

J-MAAB (Japan MAAB) A subgroup of MAAB that includes
automotive manufacturers and
suppliers in Japan and works closely
with The MathWorks. Rules with
J-MAAB scope are local to Japan.

NA-MAAB (North American MAAB) A subgroup of MAAB that includes
automotive manufacturers and
suppliers in the United States and
Europe and works closely with The
MathWorks. Rules with NA-MAAB
scope are local to the United States
and Europe.

1-7

1 Introduction

MATLAB Versions
The guidelines support all versions of the MATLAB and Simulink products. If
the rule applies to specific versions, the versions are identified in the MATLAB
versions field. The version information is in one of the following formats.

Format Definition

All All versions of MATLAB

RX, RY, or RZ A specific version of MATLAB

RX and earlier Versions of MATLAB until version RX

RX and later Versions of MATLAB from version RX to the current
version

RX through RY Versions of MATLAB between RX and RY

Prerequisites

• The Prerequisite field is for links to other guidelines that are prerequisites
for this guideline (logical conjunction).

• Use the guideline ID (for consistency) and the title (for readability) for
the links.

• The Prerequisites field should not contain any other text.

Description

• This field contains a detailed description of the guideline.

• If needed, add images and tables.

Note If formal notation (math, regular expression, syntax diagrams,
and exact numbers/limits) is available, use it to unambiguously describe
a guideline and specify an automated check. However, a human,
understandable, informal description must always be provided for daily
reference.

1-8

Guideline Template

Rationale
This field lists the reasons that apply for a given guideline. You can
recommend guidelines for one or more of the following reasons:

Rationale Description

Readability Easily understood algorithms
• Readable models

• Uniform appearance of models, code, and
documentation

• Clean interfaces

• Professional documentation

Workflow Effective development process and workflow
• Ease of maintenance

• Rapid model changes

• Reusable components

• Problem-free exchange of models

• Model portability

Simulation Efficient simulation and analysis
• Simulation speed

• Simulation memory

• Model instrumentation

Verification and
validation

Ability to verify and validate a model and generated
code with
• Requirements traceability

• Testing

• Problem-free system integration

• Clean interfaces

Code generation Generation of code that is efficient and effective for
embedded systems
• Fast software changes

• Robustness of generated code

1-9

1 Introduction

Last Change
The Last change field contains the document version number.

Model Advisor Check
The Simulink Verification and Validation product includes Simulink Model
Advisor MAAB checks, which correspond to a subset of MAAB guidelines, that
you can select and run with the Simulink Model Advisor. In this presentation
of the MAAB guidelines, The MathWorks includes a Model Advisor check
field in guideline descriptions, which contains the title of and a link to
the corresponding Model Advisor check, if a check exists. Although this
information is included, note that the MAAB working group takes a neutral
stance on recommendations for style guide checkers.

For a list of available Model Advisor checks for the MAAB guidelines, see
“MathWorks Automotive Advisory Board Checks” in the Simulink Verification
and Validation documentation. For information on using the Model Advisor,
see “Consulting the Model Advisor” in the Simulink documentation.

1-10

Document Usage

Document Usage
• Chapter 2, “Naming Conventions” and Chapter 3, “Model Architecture”
provide basic guidelines that apply to all types of models.

• Chapter 5, “Simulink” and Chapter 6, “Stateflow” deal with specific rules
for those environments.

• Some guidelines are dependent on other guidelines and are explicitly listed
throughout the document.

For information on automated checking of the guidelines, see Appendix A,
“Recommendations for Automation Tools”.

1-11

1 Introduction

1-12

2

Naming Conventions

• “General Guidelines” on page 2-2

• “Model Content” on page 2-7

2 Naming Conventions

General Guidelines
• ar_0001: Filenames

• ar_0002: Directory names

2-2

ar_0001: Filenames

ID: Title ar_0001: Filenames

Priority Mandatory

Scope MAAB

MATLAB
Versions

All

Prerequisites None

Description A file name conforms to the following constraints:

Form

filename = name.extension

• name: no leading digits, no blanks

• extension: no blanks

Uniqueness

All file names within the parent project directory

Allowed Characters

name:
a b c d e f g h i j k l m n o p q r s t u v w x y z
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
0 1 2 3 4 5 6 7 8 9 _

extension:
a b c d e f g h i j k l m n o p q r s t u v w x y z
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
0 1 2 3 4 5 6 7 8 9

Underscores

name:

2-3

ar_0001: Filenames

• Can use underscores to separate parts

• Cannot have more than one consecutive underscore

• Cannot start with an underscore

• Cannot end with an underscore

extension:

Should not use underscores

Rationale • Readability

• Workflow

Last
Changed

V1.0

Model
Advisor
Check

By Task > Modeling Standards for MAAB > Naming
Conventions > “Check for invalid file names”

2-4

ar_0002: Directory names

Priority Mandatory

Scope MAAB

MATLAB
Versions

All

Prerequisites None

Description A directory name conforms to the following constraints:

Form
directory name = name

name: no leading digits, no blanks

Uniqueness

All directory names within the parent project directory

Allowed characters

name:
a b c d e f g h i j k l m n o p q r s t u v w x y z
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
0 1 2 3 4 5 6 7 8 9 _

Underscores

name:

• Can use underscores to separate parts

• Cannot have more than one consecutive underscore

• Cannot start with an underscore

• Cannot end with an underscore

Rationale • Readability

• Workflow

2-5

ar_0002: Directory names

Last
Changed

V1.0

Model
Advisor
Check

By Task > Modeling Standards for MAAB > Naming
Conventions > “Check for invalid model directory names ”

2-6

ar_0002: Directory names

Model Content
• jc_0201: Usable characters for Subsystem names

• jc_0211: Usable characters for Inport blocks and Outport
blocks

• jc_0221: Usable characters for signal line names

• jc_0231: Usable characters for block names

• na_0014: Use of local language in Simulink and Stateflow

2-7

jc_0201: Usable characters for Subsystem names

ID: Title jc_0201: Usable characters for Subsystem

Priority Strongly recommended

Scope MAAB

MATLAB
Versions

All

Prerequisites None

Description The names of all Subsystem blocks should conform to the following
constraints:

Form

name:

• Should not start with a number

• Should not include blank spaces

Allowed Characters

name:
a b c d e f g h i j k l m n o p q r s t u v w x y z
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
0 1 2 3 4 5 6 7 8 9 _

Underscores

name:

• Can use underscores to separate parts

• Cannot have more than one consecutive underscore

• Cannot start with an underscore

• Cannot end with an underscore

2-8

jc_0201: Usable characters for Subsystem names

Rationale • Readability

• Workflow

• Code generation

Last
Changed

V2.0

Model
Advisor
Check

By Task > Modeling Standards for MAAB > Naming
Conventions > “Check whether subsystem block names include
invalid characters”

2-9

jc_0211: Usable characters for Inport blocks and
Outport blocks

ID: Title jc_0211: Usable characters for Inport blocks and Outport blocks

Priority Strongly recommended

Scope MAAB

MATLAB
Versions

All

Prerequisites None

Description The names of all Inport blocks and Output blocks should conform to
the following constraints:

Form

name:

• Should not start with a number

• Should not include blank spaces

Allowed Characters

name:
a b c d e f g h i j k l m n o p q r s t u v w x y z
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
0 1 2 3 4 5 6 7 8 9 _

Underscores

name:

• Can use underscores to separate parts

• Cannot have more than one consecutive underscore

• Cannot start with an underscore

• Cannot end with an underscore

2-10

jc_0211: Usable characters for Inport blocks and
Outport blocks

Rationale • Readability

• Workflow

• Code generation

Last
Changed

V2.0

Model
Advisor
Check

By Task > Modeling Standards for MAAB > Naming
Conventions > “Check whether Inport and Outport block names
include invalid characters”

2-11

jc_0221: Usable characters for signal line names

ID: Title jc_0221: Usable characters for signal line names

Priority Strongly recommended

Scope MAAB

MATLAB
Versions

All

Prerequisites None

Description Identifies named signals constraints

Form
name:

• Should not start with a number

• Should not include blank spaces

• Should not include any control characters

Allowed Characters

name:
a b c d e f g h i j k l m n o p q r s t u v w x y z
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
0 1 2 3 4 5 6 7 8 9 _

Underscores

name:

• Can use underscores to separate parts

• Cannot have more than one consecutive underscore

• Cannot start with an underscore

• Cannot end with an underscore

2-12

jc_0221: Usable characters for signal line names

Rationale • Readability

• Workflow

• Code generation

Last
Changed

V2.0

Model
Advisor
Check

By Task > Modeling Standards for MAAB > Naming
Conventions > “Check whether signal line names include
invalid characters”

2-13

jc_0231: Usable characters for block names

ID: Title jc_0231: Usable characters for block names

Priority Strongly recommended

Scope MAAB

MATLAB
Versions

All

Prerequisites jc_0201: Usable characters for Subsystem names

Description The names of all blocks should conform to the following constraints:

Form
name:

• Should not start with a number

• Should not include blank spaces

• Should not use double byte characters

• Carriage returns are allowed

Allowed Characters

name:
a b c d e f g h i j k l m n o p q r s t u v w x y z
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
0 1 2 3 4 5 6 7 8 9 _

Note This rule does not apply to Subsystem blocks.

Rationale • Readability

• Workflow

• Code generation

2-14

jc_0231: Usable characters for block names

Last
Changed

V2.0

Model
Advisor
Check

By Task > Modeling Standards for MAAB > Naming
Conventions > “Check whether block names include invalid
characters”

2-15

na_0014: Use of local language in Simulink and
Stateflow

ID: Title na_0014: Use of local language in Simulink and Stateflow

Priority Strongly recommended

Scope J-MAAB

MATLAB
Versions

All

Prerequisites None

Description The local language should be used in descriptive fields only. Descriptive
fields are text entry points that do not affect code generation or
simulation. Examples of descriptive fields include the Description
field in the Block Properties dialog box.

Simulink Examples

• The Description field in the Block Properties dialog box

• Text annotation entered directly in the model

2-16

na_0014: Use of local language in Simulink and
Stateflow

Stateflow® Examples

• The Description field of chart and state Properties

2-17

na_0014: Use of local language in Simulink and
Stateflow

• Annotation description added using Add Note

2-18

na_0014: Use of local language in Simulink and
Stateflow

Note It is possible that Simulink cannot open a model that includes
local language on different character encoding systems. Therefore, pay
attention when using local characters for exchanging models between
countries.

Rationale • Readability

• Workflow

Last
Changed

V2.0

Model
Advisor
Check

By Task > Modeling Standards for MAAB > Naming
Conventions > “Check whether signal line names include
invalid characters”

2-19

na_0014: Use of local language in Simulink and
Stateflow

2-20

3

Model Architecture

• “Simulink and Stateflow Partitioning” on page 3-2

• “Subsystem Hierarchies” on page 3-14

• “J-MAAB Model Architecture Decomposition” on page 3-21

This document uses the term basic blocks to refer to blocks built into
the Simulink block libraries. “Basic Blocks” on page D-2 in Appendix D,
“Background Information on Basic Blocks and Signals” lists some examples of
basic blocks.

3 Model Architecture

Simulink and Stateflow Partitioning
• na_0006: Guidelines for mixed use of Simulink and Stateflow

• na_0007: Guidelines for use of Flow Charts, Truth Tables and
State Machines

3-2

na_0006: Guidelines for mixed use of Simulink and
Stateflow

ID: Title na_0006: Guidelines for mixed use of Simulink and Stateflow

Priority Strongly recommended

Scope MAAB

MATLAB
Versions

All

Prerequisites None

Description The choice of whether to use Simulink or Stateflow to model a given
portion of the control algorithm functionality should be driven by the
nature of the behavior being modeled.

• If the function primarily involves complicated logical operations,
use Stateflow diagrams.

Use Stateflow diagrams to implement modal logic, where the
control function to be performed at the current time depends on a
combination of past and present logical conditions.

• If the function primarily involves numerical operations, use Simulink
features.

Specifics

• If the primary nature of the function is logical, but some simple
numerical calculations are done to support the logic, implement the
simple numerical functions using the Stateflow action language.

3-3

na_0006: Guidelines for mixed use of Simulink and
Stateflow

• If the primary nature of the function is numeric, but some simple
logical operations are done to support the arithmetic, implement the
simple logical functions with Simulinkblocks.

3-4

na_0006: Guidelines for mixed use of Simulink and
Stateflow

• If the primary nature of the function is logical, and some complicated
numerical calculations must be done to support the logic, use a
Simulink subsystem to implement the numerical calculations. The
Stateflow software should invoke the execution of the subsystem,
using a function call.

3-5

na_0006: Guidelines for mixed use of Simulink and
Stateflow

3-6

na_0006: Guidelines for mixed use of Simulink and
Stateflow

• Use the Stateflow product to implement modal logic, where the
control function to be performed at the current time depends on a
combination of past and present logical conditions. (If there is a need
to store the result of a logical condition test in a Simulink model,
for example, by storing a flag, this is an indicator of the presence of
modal logic, which should be modeled with Stateflow software.)

3-7

na_0006: Guidelines for mixed use of Simulink and
Stateflow

Incorrect

3-8

na_0006: Guidelines for mixed use of Simulink and
Stateflow

Correct

• Use Simulink to implement numerical expressions containing
continuously-valued states, such as: difference equations, integrals,
derivatives, and filters.

3-9

na_0006: Guidelines for mixed use of Simulink and
Stateflow

Incorrect

Correct

Rationale • Readability

• Workflow

3-10

na_0006: Guidelines for mixed use of Simulink and
Stateflow

• Simulation

• Verification and Validation

• Code Generation

Last
Changed

V2.0

Model
Advisor
Check

Not applicable

3-11

na_0007: Guidelines for use of Flow Charts, Truth Tables
and State Machines

ID: Title na_0007: Guidelines for use of Flow Charts, Truth Tables and State
Machines

Priority Strongly recommended

Scope MAAB

MATLAB
Versions

All

Prerequisites na_0006: Guidelines for mixed use of Simulink and
Stateflow

Description Within Stateflow, the choice of whether to use a flow chart or a state
chart to model a given portion of the control algorithm functionality
should be driven by the nature of the behavior being modeled.

• If the primary nature of the function segment is to calculate modes of
operation or discrete-valued states, use state charts. Some examples
are:

- Diagnostic models with pass, fail, abort, and conflict states

- Model that calculates different modes of operation for a control
algorithm

• If the primary nature of the function segment involves if-then-else
statements, use flowcharts or truth tables.

Specifics

If the primary nature of a function segment is to calculate modes or
states, but if-then-else statements are required, add a flow chart to a
state within the state chart. (See “Flowchart Patterns” on page 6-49.)

Rationale • Readability

• Workflow

3-12

na_0007: Guidelines for use of Flow Charts, Truth
Tables and State Machines

• Simulation

• Verification and Validation

• Code Generation

Last
Changed

V2.0

Model
Advisor
Check

Not applicable

3-13

na_0007: Guidelines for use of Flow Charts, Truth Tables
and State Machines

Subsystem Hierarchies
• db_0143: Similar block types on the model levels

• db_0144: Use of Subsystems

• db_0040: Model hierarchy

3-14

db_0143: Similar block types on the model levels

ID: Title db_0143: Similar block types on the model levels

Priority Strongly recommended

Scope NA-MAAB

MATLAB
Versions

All

Prerequisites None

Description You must design every level of a model with building blocks of the same
type; only subsystems or only “Basic Blocks” on page D-2.

Blocks that You Can Place at any Model Level

Block Example

Bus Creator

Bus Selector

Data Store Memory

Demux

Enable (not on highest
model level)

3-15

db_0143: Similar block types on the model levels

Blocks that You Can Place at any Model Level (Continued)

Block Example

From

Goto

Ground

If

Inport

Merge

Multiport Switch

Mux

Outport

3-16

db_0143: Similar block types on the model levels

Blocks that You Can Place at any Model Level (Continued)

Block Example

Rate Transition

Selector

Switch

Switch Case

Terminator

Trigger (not on highest
model level)

Type Conversion

Unit Delay

Note You cannot place Trigger or Enable blocks at the root level of a
model.

3-17

db_0143: Similar block types on the model levels

Rationale • Readability

• Workflow

• Verification and Validation

Last
Changed

V2.0

Model
Advisor
Check

By Task > Modeling Standards for MAAB > Simulink > “Check
for systems that mix primitive blocks and subsystems”

3-18

db_0144: Use of Subsystems

ID: Title db_0144: Use of Subsystems

Priority Strongly recommended

Scope MAAB

MATLAB
Versions

All

Prerequisites None

Description Group blocks in a Simulink diagram together into subsystems based
on functional decomposition of the algorithm, or portion thereof,
represented in the diagram.

Avoid grouping blocks into subsystems primarily for saving space
in the diagram. Each subsystem in the diagram should represent a
unit of functionality required to accomplish the purpose of the model
or submodel.

Rationale • Readability

• Workflow

• Verification and Validation

• Code Generation

Last
Changed

V2.0

Model
Advisor
Check

Not applicable

3-19

db_0040: Model hierarchy

ID: Title db_0040: Model hierarchy

Priority Strongly recommended

Scope MAAB

MATLAB
Versions

All

Prerequisites None

Description The model hierarchy should correspond to the functional structure of
the control system.

Rationale • Readability

• Workflow

• Verification and Validation

• Code Generation

Last
Changed

V2.0

Model
Advisor
Check

Not applicable

3-20

db_0040: Model hierarchy

J-MAAB Model Architecture Decomposition
• jc_0301: Controller model

• jc_0311: Top layer/root level

• jc_0321: Trigger layer

• jc_0331: Structure layer

• jc_0341: Data flow layer

3-21

jc_0301: Controller model

ID: Title jc_0301: Controller model

Priority Mandatory

Scope J-MAAB

MATLAB
Versions

All

Prerequisites None

Description Control models are organized using the following hierarchical structure.
Details on each layer are provided in corresponding rules.

• Top layer (root level), jc_0311: Top layer/root level

• Trigger layer, jc_0321: Trigger layer

• Structure layer. jc_0331: Structure layer

• Data flow layer, jc_0341: Data flow layer

Use of the Trigger level is optional. In the following figure, Type A
shows the use of a trigger level while Type B shows a model without
a trigger level.

3-22

jc_0301: Controller model

Controller Model

Rationale Workflow

Last
Changed

V2.0

Model
Advisor
Check

Not applicable

3-23

jc_0311: Top layer/root level

ID: Title jc_0311: Top layer/root level

Priority Mandatory

Scope J-MAAB

MATLAB
Versions

All

Prerequisites None

Description Items to describe in a top layer are as follows:

• Overview: Explanation of model feature overview

• Input: Input variables

• Output: Output variables

Top Layer Example

Rationale Workflow

Last
Changed

V2.0

3-24

jc_0311: Top layer/root level

Model
Advisor
Check

Not applicable

3-25

jc_0321: Trigger layer

ID: Title jc_0321: Trigger layer

Priority Mandatory

Scope J-MAAB

MATLAB
Versions

All

Prerequisites None

Description A trigger layer indicates the processing timing by using Triggered
Subsystem or Function-Call Subsystem blocks.

• The blocks should set Priority, if needed.

• The priority value must be displayed as a block annotation. You
should be able to understand the priority-based order without having
to open the block.

Trigger Layer Example

Rationale • Readability

• Workflow

• Code Generation

3-26

jc_0321: Trigger layer

Last
Changed

V2.0

Model
Advisor
Check

Not applicable

3-27

jc_0331: Structure layer

ID: Title jc_0331: Structure layer

Priority Mandatory

Scope J-MAAB

MATLAB
Versions

All

Prerequisites None

Description • Describe a structure layer like the following structure layer example.

- In the case of Type B, specify sample time at an Inport block or a
Subsystem block to define task time of the subsystem.

- In the case of Type B, use a block annotation at an Inport block
or a Subsystem block and display sample time to clarify task time
of the subsystem.

• A subsystem of a structure layer should be an atomic subsystem.

Structure Layer Example (Type A: No Description of Processing Timing)

3-28

jc_0331: Structure layer

Structure Layer Example (Type B: Description of Processing Timing)

Rationale • Readability

• Workflow

• Code Generation

Last
Changed

V2.0

Model
Advisor
Check

Not applicable

3-29

jc_0341: Data flow layer

ID: Title jc_0341: Data flow layer

Priority Mandatory

Scope J-MAAB

MATLAB
Versions

All

Prerequisites None

Description Describe a data flow layer as in the following example. In the case of
Type A, use a block annotation at an Inport block and display its sample
time to clarify execution timing of the signal.

Data Flow Layer Example

Rationale Workflow

Last
Changed

V2.0

Model
Advisor
Check

Not applicable

3-30

4

Model Configuration
Options

4 Model Configuration Options

Model Configuration Options
• jc_0011: Optimization parameters for Boolean data types

• jc_0021: Model diagnostic settings

4-2

jc_0011: Optimization parameters for Boolean data
types

ID: Title jc_0011: Optimization parameters for Boolean data types

Priority Strongly recommended

Scope MAAB

MATLAB
Versions

All

Prerequisites na_0002: Appropriate implementation of fundamental logical
and numerical operations

Description The optimization option for Boolean data types must be enabled (on).

MATLAB Version Option Name

R13SP2 and earlier Boolean Logic signals

R14 and later Use logic signals as Boolean data.
(versus double)

Rationale • Workflow

• Code Generation

Last
Changed

V2.0

Model
Advisor
Check

By Task > Modeling Standards for MAAB > Simulink > “Check
optimization parameters for Boolean data types”

4-3

jc_0021: Model diagnostic settings

ID: Title jc_0021: Model diagnostic settings

Priority Strongly recommended

Scope MAAB

MATLAB
Versions

All

Prerequisites None

Description The following diagnostics must be enabled. An enabled diagnostic
is set to warning or error. Setting the diagnostic option to none is
not permitted. Diagnostics that are not listed may be set to any value
(none, warning, or error).

Solver Diagnostics

• Algebraic loop

• Minimize algebraic loop

Sample Time Diagnostics

• Multitask rate transition

Data Validity Diagnostics

• Inf or NaN block output

• Duplicate data store names

Connectivity

• Unconnected block input ports

• Unconnected block output ports

• Unconnected line

• Unspecified bus object at root Outport block

4-4

jc_0021: Model diagnostic settings

• Mux blocks used to create bus signals

• Invalid function-call connection

• Element name mismatch

Rationale • Workflow

• Code Generation

Last
Changed

V2.0

Model
Advisor
Check

By Task > Modeling Standards for MAAB > Model Configuration
Options > “Check model diagnostic settings”

4-5

jc_0021: Model diagnostic settings

4-6

5

Simulink

• “Diagram Appearance” on page 5-2

• “Signals” on page 5-30

• “Block Usage” on page 5-38

• “Block Parameters” on page 5-60

• “Simulink Patterns” on page 5-67

5 Simulink®

Diagram Appearance
• na_0004: Simulink model appearance

• db_0043: Simulink font and font size

• db_0042: Port block in Simulink models

• na_0005: Port block name visibility in Simulink models

• jc_0081: Icon display for Port block

• jm_0002: Block resizing

• db_0142: Position of block names

• jc_0061: Display of block names

• db_0146: Triggered, enabled, conditional Subsystems

• db_0140: Display of basic block parameters

• jm_0013: Annotations

• db_0032: Simulink signal appearance

• db_0141: Signal flow in Simulink models

• jc_0171: Maintaining signal flow when using Goto and From
blocks

• jm_0010: Port block names in Simulink models

• jc_0281: Naming of Trigger Port block and Enable Port block

5-2

na_0004: Simulink model appearance

ID: Title na_0004: Simulink model appearance

Priority Recommended

Scope MAAB

MATLAB
Versions

All

Prerequisites None

Description The model appearance settings should conform to the following
guidelines when the model is released. You can change the settings
during the development process.

View Options Setting

Model Browser Unchecked

Screen color White

Status Bar Checked

Toolbar Checked

Zoom factor Normal (100%)

Block Display Options Setting

Background Color White

Foreground Color Black

Execution Context Indicator Unchecked

Library Link Display None

Linearization Indicators Checked

Model/Block I/O Mismatch Unchecked

Model Block Version Unchecked

5-3

na_0004: Simulink model appearance

Block Display Options Setting

Sample Time Colors Unchecked

Sorted Order Unchecked

Signal Display Options Setting

Port Data Types Unchecked

Signal Dimensions Unchecked

Storage Class Unchecked

Test point Indicators Checked

Viewer Indicators Checked

Wide Non-scalar Lines Checked

Rationale • Readability

• Workflow

Last
Changed

V2.0

Model
Advisor
Check

By Task > Modeling Standards for MAAB > Simulink > “Check
for Simulink diagrams that have nonstandard appearance
attributes”

5-4

db_0043: Simulink font and font size

ID: Title db_0043: Simulink font and font size

Priority Strongly recommended

Scope MAAB

MATLAB
Versions

All

Prerequisites None

Description All text elements (block names, block annotations, and signal labels)
except free text annotations within a model, must have the same font
style and font size. Select font style and font size for legibility.

Note The selected font should be portable (for example, the Simulink
and Stateflow default font) or convertible between platforms (for
example, Arial or Helvetica 12pt).

Rationale • Readability

• Workflow

Last
Changed

V2.0

Model
Advisor
Check

By Task > Modeling Standards for MAAB > Simulink > “Check
for difference in font and font sizes”

5-5

db_0042: Port block in Simulink models

ID: Title db_0042: Port block in Simulink models

Priority Strongly recommended

Scope MAAB

MATLAB
Versions

All

Prerequisites None

Description In a Simulink model, ports must comply with the following rules:

• Place Inport blocks on the left side of the diagram; you may move
them to prevent signal crossings.

• Place Outport blocks on the right side of the diagram; you may move
them to prevent signal crossings.

• You may use duplicate Inport blocks at the subsystem level, if
required, but avoid doing so, if possible.

- Do not use duplicate Inport blocks at the root level.

5-6

db_0042: Port block in Simulink models

Correct

Incorrect

Notes on the incorrect model

• Inport 2 should be moved in so it does not cross the feedback loop
lines.

• Outport 1 should be moved to the right side of the diagram.

5-7

db_0042: Port block in Simulink models

Rationale Readability

Last
Changed

V2.0

Model
Advisor
Check

By Task > Modeling Standards for MAAB > Simulink > “Check
for invalid port positioning and configuration”

5-8

na_0005: Port block name visibility in Simulink
models

ID: Title na_0005: Port block name visibility in Simulink models

Priority Strongly recommended

Scope MAAB

MATLAB
Versions

All

Prerequisites None

Description While for some items, it is not possible to define a single approach that
may apply to all organizations’ internal processes, it is important that,
at least within a given organization, a single consistent approach is
followed. An organization applying the guidelines must enforce one of
the following alternatives.

Apply one of the following practices:

• The name of an Inport or Outport block is not hidden.
(Format > Hide Name is not allowed.)

• The name of an Inport or Outport block must be hidden.
(Format > Hide Name is used.)

Exception: The names cannot be hidden inside library subsystem
blocks.

5-9

na_0005: Port block name visibility in Simulink models

Rationale Readability

Last
Changed

V2.0

Model
Advisor
Check

By Task > Modeling Standards for MAAB > Simulink > “Check
visibility of port block names”

5-10

jc_0081: Icon display for Port block

ID: Title jc_0081: Icon display for Port block

Priority Recommended

Scope MAAB

MATLAB
Versions

R14 and later

Prerequisites None

Description The Icon display setting should be set to Port number for Inport and
Outport blocks.

Correct

Incorrect

Rationale Readability

Last
Changed

V2.0

5-11

jc_0081: Icon display for Port block

Model
Advisor
Check

By Task > Modeling Standards for MAAB > Simulink > “Check
whether model has unconnected block input ports, output
ports, or signal lines”

5-12

jm_0002: Block resizing

ID: Title jm_0002: Block resizing

Priority Mandatory

Scope MAAB

MATLAB
Versions

All

Prerequisites None

Description All blocks in a model must be sized such that the icon is completely
visible and recognizable. In particular, any displayed text (for example,
tunable parameters, file names, or equations) in the icon must be
readable.

This guideline requires that you resize blocks with variable icons or
blocks with a variable number of inputs and outputs. In some cases, it
may not be practical or desirable to resize the icon of a subsystem block
so that all of the input and output names within it are readable. In such
cases, you may hide the names in the icon by using a mask or by hiding
the names in the subsystem associated with the icon. If you do this,
the signal lines coming into and out of the subsystem block should be
clearly labeled in close proximity to the block.

Correct

5-13

jm_0002: Block resizing

Incorrect

Rationale Readability

Last
Changed

V2.0

Model
Advisor
Check

Not applicable

5-14

db_0142: Position of block names

ID: Title db_0142: Position of block names

Priority Strongly recommended

Scope MAAB

MATLAB
Versions

All

Prerequisites None

Description If shown, place the name of a block below the block.

Correct

Incorrect

Rationale • Readability

• Workflow

Last
Changed

V2.0

Model
Advisor
Check

By Task > Modeling Standards for MAAB > Simulink > “Check
whether block names do not appear below blocks”

5-15

jc_0061: Display of block names

ID: Title jc_0061: Display of block names

Priority Recommended

Scope MAAB

MATLAB
Versions

All

Prerequisites None

Description • Display a block name when it provides descriptive information.

• Do not display a block name if the block function is known and
understood from the block appearance.

Rationale Readability

Last
Changed

V2.0

Model
Advisor
Check

By Task > Modeling Standards for MAAB > Simulink > “Check
the display attributes of block names”

5-16

db_0146: Triggered, enabled, conditional Subsystems

ID: Title db_0146: Triggered, enabled, conditional Subsystems

Priority Strongly recommended

Scope MAAB

MATLAB
Versions

All

Prerequisites None

Description Place blocks that are inside of and define subsystems as conditional or
iterative at a consistent location at the top of the subsystem diagram.
This applies to the following types of blocks:

• Function call

• Enabled

• Triggered

• If /Else Action

Rationale • Readability

• Workflow

• Verification and Validation

Last
Changed

V2.0

Model
Advisor
Check

By Task > Modeling Standards for MAAB > Simulink > “Check
for improperly positioned Trigger and Enable blocks”

5-17

db_0140: Display of basic block parameters

ID: Title db_0140: Display of basic block parameters

Priority Recommended

Scope MAAB

MATLAB
Versions

All

Prerequisites None

Description Display important parameters with values other than the block default
values.

Correct

Note The attribute string is one method to support this. The block
annotation tab allows you to add the attribute information that you
want.

Rationale • Readability

5-18

db_0140: Display of basic block parameters

• Verification and Validation

Last
Changed

V2.0

Model
Advisor
Check

By Task > Modeling Standards for MAAB > Simulink > “Check
for display of nondefault block attributes”

5-19

jm_0013: Annotations

ID: Title jm_0013: Annotations

Priority Strongly recommended

Scope MAAB

MATLAB
Versions

R12.1

Prerequisites None

Description Annotations should not have a drop shadow. (Format > Show Drop
Shadow is not allowed.)

Rationale Readability

Last
Changed

V2.0

Model
Advisor
Check

By Task > Modeling Standards for MAAB > Simulink > “Check
whether annotations have drop shadows”

5-20

db_0032: Simulink signal appearance

ID: Title db_0032: Simulink signal appearance

Priority Strongly recommended

Scope MAAB

MATLAB
Versions

All

Prerequisites None

Description Signal lines

• Should not cross each other, if possible

• Are drawn with right angles

• Are not drawn one upon the other

• Do not cross any blocks

• Should not split into more than two sublines at a single branching
point

Correct

5-21

db_0032: Simulink signal appearance

Incorrect

Rationale • Readability

• Workflow

Last
Changed

V2.0

Model
Advisor
Check

Not applicable

5-22

db_0141: Signal flow in Simulink models

ID: Title db_0141: Signal flow in Simulink models

Priority Strongly recommended

Scope MAAB

Versions All

Prerequisites None

Description The signal flow in a model is from left to right.

Exception: Feedback loops

Sequential blocks or subsystems are arranged from left to right.

Exception: Feedback loops

Parallel blocks or subsystems are arranged from top to bottom.

Rationale • Readability

• Workflow

5-23

db_0141: Signal flow in Simulink models

• Verification and Validation

Last
Changed

V2.0

Model
Advisor
Check

Not applicable

5-24

jc_0171: Maintaining signal flow when using Goto
and From blocks

ID: Title jc_0171: Maintaining signal flow when using Goto and From blocks

Priority Strongly recommended

Scope MAAB

MATLAB
Versions

All

Prerequisites None

Description • You must maintain visual depiction of signal flow between
subsystems.

• You can use Goto and From blocks provided that you use at least one
signal line between connected subsystems.

• If the subsystems are connected in a feed-forward and feedback loop,
you must connect at least one signal line for each direction.

Correct

5-25

jc_0171: Maintaining signal flow when using Goto and
From blocks

Incorrect

Rationale • Readability

• Workflow

• Verification and Validation

Last
Changed

V2.0

Model
Advisor
Check

Not applicable

5-26

jm_0010: Port block names in Simulink models

ID: Title jm_0010: Port block names in Simulink models

Priority Strongly recommended

Scope MAAB

MATLAB
Versions

All

Prerequisites • db_0042: Port block in Simulink models

• na_0005: Port block name visibility in Simulink models

Description For some items, though you may not be able to define a single approach
for internal processes of all organizations, within a given organization,
try to follow a single, consistent approach. An organization applying the
guidelines must enforce one of the following options:

• Names of Inport and Outport blocks must match
corresponding signal or bus names.

Exceptions:

- When any combination of an Inport block, an Outport block, and
any other block have the same block name, use a suffix or prefix on
the Inport and Outport blocks.

- One common suffix / prefix is _in for Inport blocks and _out for
Outport blocks.

- You may use any suffix or prefix on the ports, however, the prefix
that you select must be consistent.

- Library blocks and reusable subsystems that encapsulate generic
functionality.

• When names of Inport and Outport blocks are hidden, apply a
consistent naming practice for the blocks. Suggested practices
include leaving the default names (for example, Out1), giving them

5-27

jm_0010: Port block names in Simulink models

the same name as the associated signal, or giving them a shortened
or mangled version of the name of the associated signal.

Rationale • Readability

• Workflow

• Simulation

Last
Changed

V2.0

Model
Advisor
Check

By Task > Modeling Standards for MAAB > Simulink > “Check
for mismatches between names of ports and corresponding
signals”

5-28

jc_0281: Naming of Trigger Port block and Enable
Port block

ID: Title jc_0281: Naming of Trigger Port block and Enable Port block

Priority Strongly recommended

Scope J-MAAB

MATLAB
Versions

All

Prerequisites None

Description For Trigger and Enable port blocks, match the block name of the signal
triggering the subsystem.

Rationale Readability

Last
Changed

V2.0

Model
Advisor
Check

By Task > Modeling Standards for MAAB > Simulink > “Check
Trigger and Enable block port names”

5-29

jc_0281: Naming of Trigger Port block and Enable Port
block

Signals
• na_0008: Display of labels on signals

• na_0009: Entry versus propagation of signal labels

• db_0097: Position of labels for signals and busses

• db_0081: Unconnected signals, block inputs and block
outputs

The preceding guidelines apply to signals and signal labels. For
background information, see “Signals and Signal Labels” on page D-3.

Some of the preceding guidelines refer to basic blocks. For an
explanation of the meaning and some examples, see “Basic Blocks” on
page D-2.

5-30

na_0008: Display of labels on signals

ID: Title na_0008: Display of labels on signals

Priority Recommended

Scope MAAB

MATLAB
Versions

All

Prerequisites None

Description • A label must be displayed on a signal originating from the following
blocks:

- Inport block

- From block (block icon exception applies – see the Note below

- Data Store Read block (block icon exception applies)

- Subsystem block or Stateflow chart block (block icon exception
applies)

- Constant block (block icon exception applies)

- Bus Selector block (the tool forces this to happen)

- Demux block

- Selector block

• A label must be displayed on any signal connected to the following
destination blocks (directly or by way of a basic block that performs
a nontransformative operation):

- Outport block

- Goto block

- Data Store Write block

- Bus Creator block

- Mux block

- Subsystem block

5-31

na_0008: Display of labels on signals

- Chart block

Note Block icon exception (applicable only where called out): If
the signal label is visible in the originating block icon display, the
connected signal does not need to have the label displayed, unless the
signal label is needed elsewhere due to a destination-based rule.

• In addition, a label may be displayed on any other signal of interest
to you or your customers.

Rationale • Readability

• Workflow

• Verification and Validation

• Code Generation

Last
Changed

V2.0

Model
Advisor
Check

By Task > Modeling Standards for MAAB > Simulink > “Check
for proper labeling on signal lines”

5-32

na_0009: Entry versus propagation of signal labels

ID: Title na_0009: Entry versus propagation of signal labels

Priority Strongly recommended

Scope MAAB

MATLAB
Versions

All

Prerequisites na_0008: Display of labels on signals

Description If a label is present on a signal, the following rules define whether that
label is created there (entered directly on the signal) or propagated from
its true source (inherited from elsewhere in the model by using the less
than (<) character).

• Any displayed signal label must be entered for signals that:

- Originate from an Inport at the Root (top) Level of a model

- Originate from a basic block that performs a transformative
operation (For the purpose of interpreting this rule only, the
Bus Creator block, Mux block, and Selector block are considered
to be included among the blocks that perform transformative
operations.)

• Any displayed signal label must be propagated for signals that:

- Originate from an Inport block in a nested subsystem

Exception: If the nested subsystem is a library subsystem, a
label may be entered on the signal coming from the Inport to
accommodate reuse of the library block.

- Originate from a basic block that performs a nontransformative
operation

- Originate from a Subsystem or Stateflow chart block

5-33

na_0009: Entry versus propagation of signal labels

Exception: If the connection originates from the output of a library
subsystem block instance, a new label may be entered on the
signal to accommodate reuse of the library block.

Rationale • Readability

• Workflow

• Verification and Validation

• Code Generation

Last
Changed

V2.0

Model
Advisor
Check

By Task > Modeling Standards for MAAB > Simulink > “Check
for propagated labels on signal lines”

5-34

db_0097: Position of labels for signals and busses

ID: Title db_0097: Position of labels for signals and busses

Priority Strongly recommended

Scope MAAB

MATLAB
Versions

All

Prerequisites None

Description The labels must be visually associated with the corresponding signal
and not overlap other labels, signals, or blocks.

Labels should be located consistently below horizontal lines and close to
the corresponding source or destination block.

Rationale • Readability

• Workflow

Last
Changed

V2.0

Model
Advisor
Check

Not applicable

5-35

db_0081: Unconnected signals, block inputs and block
outputs

ID: Title db_0081: Unconnected signals, block inputs and block outputs

Priority Mandatory

Scope MAAB

MATLAB
Versions

All

Prerequisites None

Description A system must not have any:

• Unconnected subsystem or basic block inputs

• Unconnected subsystem or basic block outputs

• Unconnected signal lines

In addition:

• An otherwise unconnected input should be connected to a ground
block

• An otherwise unconnected output should be connected to a terminator
block

Rationale • Readability

• Workflow

• Verification and Validation

Last
Changed

V2.0

5-36

db_0081: Unconnected signals, block inputs and block
outputs

Model
Advisor
Check

By Task > Modeling Standards for MAAB > Simulink > “Check
whether model has unconnected block input ports, output
ports, or signal lines”

5-37

db_0081: Unconnected signals, block inputs and block
outputs

Block Usage
• na_0003: Simple logical expressions in If Condition

block

• na_0002: Appropriate implementation of fundamental
logical and numerical operations

• jm_0001: Prohibited Simulink standard blocks inside
controllers

• hd_0001: Prohibited Simulink sinks

• na_0011: Scope of Goto and From blocks

• jc_0141: Use of the Switch block

• jc_0121: Use of the Sum block

• jc_0131: Use of Relational Operator block

• jc_0161: Use of Data Store Read/Write/Memory blocks

Some of the preceding guidelines refer to basic blocks. For an
explanation of the meaning and some examples, see “Basic Blocks” on
page D-2.

5-38

na_0003: Simple logical expressions in If Condition
block

ID: Title na_0003: Simple logical expressions in If Condition block

Priority Mandatory

Scope MAAB

MATLAB
Versions

All

Prerequisites None

Description A logical expression may be implemented within an If Condition block
instead of building it up with logical operation blocks, if the expression
contains two or fewer primary expressions. A primary expression is
defined as one of the following:

• An input

• A constant

• A constant parameter

• A parenthesized expression containing no operators except zero or
one instance of the following operators: < , <= , >, >=, ~=, ==, ~. (See
the following examples.)

Exception

A logical expression may contain more than two primary expressions
if both of the following are true:

• The primary expressions are all inputs

• Only one type of logical operator is present

Examples of Acceptable Exceptions

• u1 | u2 | u3 | u4 | u5

• u1 & u2 & u3 & u4

5-39

na_0003: Simple logical expressions in If Condition
block

Examples of Primary Expressions

• u1

• 5

• K

• (u1 > 0)

• (u1 <= G)

• (u1 > U2)

• (~u1)

Examples of Acceptable Logical Expressions

• u1 | u2

• (u1 > 0) & (u1 < 20)

• (u1 > 0) & (u2 < u3)

• (u1 > 0) & (~u2)

Examples of Unacceptable Logical Expressions

u1 & u2 | u3 (too many primary expressions)

u1 & (u2 | u3) (unacceptable operator within
primary expression)

(u1 > 0) & (u1 < 20) & (u2 > 5) (too many primary expressions
that are not inputs)

(u1 > 0) & ((2*u2) > 6) (unacceptable operator within
primary expression)

Rationale • Readability

• Workflow

5-40

na_0003: Simple logical expressions in If Condition
block

Last
Changed

V2.0

Model
Advisor
Check

Not applicable

5-41

na_0002: Appropriate implementation of fundamental
logical and numerical operations

ID: Title na_0002: Appropriate implementation of fundamental logical and
numerical operations

Priority Mandatory

Scope MAAB

MATLAB
Versions

All

Prerequisites None

Description • Blocks that are intended to perform numerical operations must not
be used to perform logical operations.

Incorrect

• A logical output should never be connected directly to the input of
blocks that operate on numerical inputs.

• The result of a logical expression fragment should never be operated
on by a numerical operator.

5-42

na_0002: Appropriate implementation of fundamental
logical and numerical operations

Incorrect

• Blocks that are intended to perform logical operations must not be
used to perform numerical operations.

• A numerical output should never be connected to the input of blocks
that operate on logical inputs.

Incorrect

Rationale • Readability

• Workflow

Last
Changed

V2.0

Model
Advisor
Check

Not applicable

5-43

jm_0001: Prohibited Simulink standard blocks inside
controllers

ID: Title jm_0001: Prohibited Simulink standard blocks inside controllers

Priority Mandatory

Scope MAAB

MATLAB
Versions

All

Prerequisites None

Description Controller models must be designed from discrete blocks.

The following sources are not allowed:

Signal
Generator

Clock

Step Digital Clock

Ramp From File

Sine Wave
From
Workspace

Repeating
Sequence

Random
Number

Discrete Pulse
Generator

Uniform
Random
Number

5-44

jm_0001: Prohibited Simulink standard blocks inside
controllers

Pulse
Generator

Band-Limited
White Noise

Chirp Signal

The following continuous blocks are not allowed:

Integrator State-Space

Derivative Transfer Fcn

Transport
Delay Zero-Pole

Variable
Transport
Delay

The following additional blocks are not allowed. The MAAB Style guide
group recommends not using the following blocks. The list may be
extended by individual companies.

Slider Gain
Real-Imag to
Complex

Algebraic
Constraint

Hit Crossing

5-45

jm_0001: Prohibited Simulink standard blocks inside
controllers

Manual Switch Polynomial

Complex to
Magnitude-Angle

MATLAB Fcn

Magnitude-Angle
to Complex

Goto Tag
Visibility

Complex to
Real-Imag

Probe

Rationale • Readability

• Workflow

• Code Generation

Last
Changed

V2.0

Model
Advisor
Check

By Task > Modeling Standards for MAAB > Simulink > “Check
for blocks that are not discrete ”

5-46

hd_0001: Prohibited Simulink sinks

ID: Title hd_0001: Prohibited Simulink sinks

Priority Strongly recommended

Scope MAAB

MATLAB
Versions

All

Prerequisites None

Description Controller models must be designed from discrete blocks.

The following sink blocks are not allowed:

Scope To
Workspace

XY
Graph

Stop
Simulation

Display Floating
Scope

To File

Rationale • Readability

• Workflow

Last
Changed

V2.0

5-47

hd_0001: Prohibited Simulink sinks

Model
Advisor
Check

By Task > Modeling Standards for MAAB > Simulink > “Check
for prohibited sink blocks”

5-48

na_0011: Scope of Goto and From blocks

ID: Title na_0011: Scope of Goto and From blocks

Priority Strongly recommended

Scope MAAB

MATLAB
Versions

All

Prerequisites None

Description For signal flows, From and Goto blocks must use local scope.

Note Control flow signals may use global scope.

Rationale • Readability

• Workflow

• Code Generation

Last
Changed

V2.0

Model
Advisor
Check

By Task > Modeling Standards for MAAB > Simulink > “Check
for proper scope of From and Goto blocks”

5-49

jc_0141: Use of the Switch block

ID: Title jc_0141: Use of the Switch block

Priority Strongly recommended

Scope MAAB

MATLAB
Versions

All

Prerequisites None

Description • The switch condition, input 2, must be a Boolean value.

• The block parameter, Criteria for passing first input, should be
set to u2~=0.

• The block parameter, Criteria for passing first input, must not be
set to u2>threshold for R13 versions of MATLAB.

5-50

jc_0141: Use of the Switch block

Correct

Incorrect

5-51

jc_0141: Use of the Switch block

Rationale • Readability

• Workflow

Last
Changed

V2.0

Model
Advisor
Check

By Task > Modeling Standards for MAAB > Simulink > “Check
for proper use of Switch blocks”

5-52

jc_0121: Use of the Sum block

ID: Title jc_0121: Use of the Sum block

Priority Recommended

Scope MAAB

MATLAB
Versions

All

Prerequisites None

Description Sum blocks should:

• Use the “rectangular” shape.

• Be sized so that the input signals do not overlap.

Correct

5-53

jc_0121: Use of the Sum block

Incorrect

You may use the round shape in feedback loops.

• There should be no more than three inputs.

• Position the inputs at 90,180,270 degrees.

• Position the output at 0 degrees.

Correct

5-54

jc_0121: Use of the Sum block

Incorrect

Correct

Incorrect

5-55

jc_0121: Use of the Sum block

Rationale Readability

Last
Changed

V2.0

Model
Advisor
Check

Not applicable

5-56

jc_0131: Use of Relational Operator block

ID: Title jc_0131: Use of Relational Operator block

Priority Recommended

Scope J-MAAB

MATLAB
Versions

All

Prerequisites None

Description When the relational operator is used to compare a signal to a constant
value, the constant input should be the second (lower) input signal.

Correct

Incorrect

Rationale • Readability

• Code Generation

5-57

jc_0131: Use of Relational Operator block

Last
Changed

V2.0

Model
Advisor
Check

By Task > Modeling Standards for MAAB > Simulink > “Check
for proper position of constants used in Relational Operator
blocks”

5-58

jc_0161: Use of Data Store Read/Write/Memory
blocks

ID: Title jc_0161: Use of Data Store Read/Write/Memory blocks

Priority Strongly recommended

Scope J-MAAB

MATLAB
Versions

All

Prerequisites jc_0341: Data flow layer

Description Data Store Memory, Data Store Read, and Data Store Write blocks are

• Prohibited in a data flow layer

• Allowed between subsystems running at different rates

Rationale • Readability

• Workflow

Last
Changed

V2.0

Model
Advisor
Check

Not applicable

5-59

jc_0161: Use of Data Store Read/Write/Memory blocks

Block Parameters
• db_0112: Indexing

• na_0010: Grouping data flows into signals

• db_0110: Tunable parameters in basic blocks

Some of the preceding guidelines refer to basic blocks. For an
explanation of the meaning and some examples, see “Basic Blocks” on
page D-2.

5-60

db_0112: Indexing

ID: Title db_0112: Indexing

Priority Strongly recommended

Scope MAAB

MATLAB
Versions

All

Prerequisites None

Description One-based indexing [1, 2, 3,…] is for:

• MATLAB

Workspace variables and structures
Local variables of functions written in M-code
Global variables

• Simulink

Signal vectors and matrices
Parameter vectors and matrices
S-function input and output signal vectors and matrices in M-code
S-function parameter vectors and matrices in M-code
S-function local variables in M-code

Zero-based indexing [0, 1, 2, ...] is for:

• Simulink

S-function input and output signal vectors and matrices in C
S-function input parameters in C
S-function parameter vectors and matrices in C
S-function local variables in C

• Stateflow

Input and output signal vectors and matrices
Parameter vectors and matrices

5-61

db_0112: Indexing

Local variables
Custom variables and structures in C

• C code

Local variables and structures
Global variables

Rationale • Readability

• Workflow

• Code Generation

Last
Changed

V2.0

Model
Advisor
Check

By Task > Modeling Standards for MAAB > Simulink > “Check
for blocks not using one-based indexing”

5-62

na_0010: Grouping data flows into signals

ID: Title na_0010: Grouping data flows into signals

Priority Strongly recommended

Scope MAAB

MATLAB
Versions

All

Prerequisites None

Description Vectors

The individual scalar signals composing a vector must have common
functionality, data types, dimensions, and units. The most common
example of a vector signal is sensor or actuator data that is grouped into
an array indexed by location. The output of a Mux block must always be
a vector. The inputs to a Mux block must always be scalars.

Busses

Signals that do not meet criteria for use as a vector, as previously
described, must only be grouped into bus signals. Use Bus Selector
blocks only with a bus signal input; do not use them to extract scalar
signals from vector signals.

Examples

Some examples of vector signals include:

Vector type Size

Row vector [1 n]

Column vector [n 1]

Wheel speed vector [1 Number of wheels]

Cylinder vector [1 Number of cylinders]

5-63

na_0010: Grouping data flows into signals

Vector type Size

Position vector based on 2D
coordinates

[1 2]

Position vector based on 3D
coordinates

[1 3]

Some examples of bus signals include:

Bus type Elements

Force Vector [Fx, Fy, Fz]

Position

Wheel Speed Vector [Θlf, Θrf, Θlr, Θrr]

Acceleration

Sensor Bus

Pressure

Sensor BusController Bus

Actuator Bus

Coolant TemperatureSerial Data Bus

Engine Speed, Passenger Door Open

Rationale • Readability

• Workflow

Last
Changed

V2.0

Model
Advisor
Check

By Task > Modeling Standards for MAAB > Simulink > “Check
for proper use of signal buses and Mux block usage”

5-64

db_0110: Tunable parameters in basic blocks

ID: Title db_0110: Tunable parameters in basic blocks

Priority Strongly recommended

Scope MAAB

MATLAB
Versions

All

Prerequisites None

Description To ensure that a parameter is tunable, enter it in the basic block:

• Without any expression.

• Without a data type conversion.

• Without selection of rows or columns.

Correct

Incorrect

Rationale • Readability

• Workflow

• Code Generation

Last
Changed

V2.0

5-65

db_0110: Tunable parameters in basic blocks

Model
Advisor
Check

By Task > Modeling Standards for MAAB > Simulink > “Check
whether tunable parameters specify expressions, data type
conversions, or indexing operations”

5-66

db_0110: Tunable parameters in basic blocks

Simulink Patterns
• na_0012: Use of Switch vs. If-Then-Else Action

Subsystem

• db_0114: Simulink patterns for If-then-else-if
constructs

• db_0115: Simulink patterns for case constructs

• db_0116: Simulink patterns for logical constructs with
logical blocks

• db_0117: Simulink patterns for vector signals

• jc_0351: Methods of initialization

• jc_0111: Direction of Subsystem

The preceding guidelines illustrate sample patterns used in Simulink
diagrams. As such, the patterns normally would be part of a much
larger Simulink diagram.

Some of the preceding guidelines refer to basic blocks. For an
explanation of the meaning and some examples, see “Basic Blocks” on
page D-2.

5-67

na_0012: Use of Switch vs. If-Then-Else Action
Subsystem

ID: Title na_0012: Use of Switch vs. If-Then-Else Action Subsystem

Priority Strongly recommended

Scope MAAB

MATLAB
Versions

All

Prerequisites None

Description The Switch block should be used for modeling simple if-then-else
structures, if the associated then and else actions involve only the
assignment of constant values.

The if-then-else action subsystem construct:

• Should be used for modeling if-then-else structures, if the associated
then and/or else actions require complicated computations. This
maximizes simulation efficiency and the efficiency of generated code.
(Note that even a basic block, for example a table lookup, may require
fairly complicated computations.)

5-68

na_0012: Use of Switch vs. If-Then-Else Action
Subsystem

• Must be used for modeling if-then-else structures, if the purpose of
the construct is to avoid an undesirable numerical computation, such
as division by zero.

• Should be used for modeling if-then-else structures, if the explicit or
implied then or the else action is just to hold the associated output
values.

In other cases, the degree of complexity of the then and/or else action
computations and the intelligence of the Simulink simulation and code
generation engines determine the appropriate construct.

These statements also apply to more complicated nested and cascaded
if-then-else structures and case structure implementations.

Rationale • Readability

• Workflow

Last
Changed

V2.0

Model
Advisor
Check

Not applicable

5-69

db_0114: Simulink patterns for If-then-else-if constructs

ID: Title db_0114: Simulink patterns for If-then-else-if constructs

Priority Strongly recommended

Scope MAAB

MATLAB
Versions

All

Prerequisites None

Description Use the following patterns for If-then-else-if constructs within a
Simulink model:

Equivalent Functionality Simulink Pattern

if then else if with blocks

if (If_Condition) {
output_signal = If_Value;
}
else if (Else_If_Condition) {
output_signal =
Else_If_Value;
}
else {
output_signal =
Else_Value;
}

5-70

db_0114: Simulink patterns for If-then-else-if
constructs

Equivalent Functionality Simulink Pattern

if then else if with if/then/else
subsystems

if(Fault_1_Active &
Fault_2_Active)
{

ErrMsg = SaftyCrit;
}
else if (Fault_1_Active |
Fault_2_Active)
{

ErrMsg = DriveWarn;
}
else
{

ErrMsg = NoFaults;
}

Rationale • Readability

• Workflow

• Code Generation

Last
Changed

V2.0

Model
Advisor
Check

Not applicable

5-71

db_0115: Simulink patterns for case constructs

ID: Title db_0115: Simulink patterns for case constructs

Priority Strongly recommended

Scope MAAB

MATLAB
Versions

All

Prerequisites None

Description Use the following patterns for case constructs within a Simulink model:

Equivalent Functionality Simulink Pattern

case with Switch Case block

switch (PRNDL_Enum)
{
case 1

TqEstimate = ParkV;
break;

case 2
TqEstimae = RevV;
break;

default
TqEstimate = NeutralV;
break;

}

5-72

db_0115: Simulink patterns for case constructs

Equivalent Functionality Simulink Pattern

case with subsystems

output_version1 =
function_version1(input_signal);
output_version2 =
function_version2(input_signal);
output_version3 =
function_version3(input_signal);
output_version4 =
function_version4(input_signal);
switch (selection) {
case 1:
output_signal = output_version1;
break;
case 2:
output_signal = output_version2;
break;
case 3:
output_signal = output_version3;
break;
case 4:
output_signal = output_version4;
}

5-73

db_0115: Simulink patterns for case constructs

Equivalent Functionality Simulink Pattern

case with enabled subsystems

switch (selection) {
case 1:
output_version1 =
function_version1(input_signal);
output_signal = output_version1;
break;
case 2:
output_version2 =
function_version2(input_signal);
output_signal = output_version2;
break;
case 3:
output_version3 =
function_version3(input_signal);
output_signal = output_version3;
break;
default:
output_version4 =
function_version4(input_signal);
output_signal = output_version4;
}

Rationale • Readability

• Workflow

• Verification and Validation

Last
Changed

V2.0

5-74

db_0115: Simulink patterns for case constructs

Model
Advisor
Check

Not applicable

5-75

db_0116: Simulink patterns for logical constructs with
logical blocks

ID: Title db_0116: Simulink patterns for logical constructs with logical blocks

Priority Strongly recommended

Scope MAAB

MATLAB
Versions

All

Prerequisites None

Description Use the following patterns for logical combinations within Simulink:

5-76

db_0116: Simulink patterns for logical constructs with
logical blocks

Equivalent Functionality Simulink Pattern

Combination of logical signals:
conjunctive

Combination of logical signals:
disjunctive

Rationale • Readability

5-77

db_0116: Simulink patterns for logical constructs with
logical blocks

• Workflow

• Verification and Validation

Last
Changed

V1.0

Model
Advisor
Check

Not applicable

5-78

db_0117: Simulink patterns for vector signals

ID: Title db_0117: Simulink patterns for vector signals

Priority Strongly recommended

Scope MAAB

MATLAB
Versions

All

Prerequisites None

Description Use the following patterns for vector signals within a Simulink model:

Equivalent Functionality Simulink Pattern

Vector loop

for (i=0;
i>input_vector_size; i++)
{
output_vector(i) =
input_vector(i) *
tunable_parameter_value;
}

Vector loop

for (i=0;
i>input_vector_size; i++)
{
output_vector(i) =
input_vector(i) *
tunable_parameter_vector(i);
}

5-79

db_0117: Simulink patterns for vector signals

Equivalent Functionality Simulink Pattern

Vector loop

output_signal = 1;
for (i=0;
i>input_vector_size; i++)
{
output_signal =
output_signal *
input_vector(i);
}

Vector loop

output_signal = 1;
for (i=0;
i>input_vector_size; i++)
{
output_signal =
output_signal /
input_vector(i);
}

Vector loop

for (i=0;
i>input_vector_size; i++)
{
output_vector(i) =
input_vector(i) +
tunable_parameter_value;
}

5-80

db_0117: Simulink patterns for vector signals

Equivalent Functionality Simulink Pattern

Vector loop

for (i=0;
i>input_vector_size; i++)
{
output_vector(i) =
input_vector(i) +
tunable_parameter_vector(i);
}

Vector loop:

output_signal = 0;
for (i=0;
i>input_vector_size; i++)
{
output_signal =
output_signal +
input_vector(i);
}

Vector loop:

output_signal = 0;
for (i=0;
i>input_vector_size; i++)
{
output_signal =
output_signal -
input_vector(i);
}

5-81

db_0117: Simulink patterns for vector signals

Equivalent Functionality Simulink Pattern

Minimum or maximum of a signal or a
vector over time:

Change event of a signal or a vector:

Rationale • Readability

• Workflow

• Verification and Validation

• Code Generation

5-82

db_0117: Simulink patterns for vector signals

Last
Changed

V1.0

Model
Advisor
Check

Not applicable

5-83

jc_0351: Methods of initialization

ID: Title jc_0351: Methods of initialization

Priority Recommended

Scope MAAB

MATLAB
Versions

All

Prerequisites db_0140: Display of basic block parameters

Description Simple Initialization

• Blocks such as Unit Delay, which have an initial value field, can be
used to set simple initial values.

• To determine if the initial value needs to be displayed, see MAAB
Guideline db_0140: Display of basic block parameters.

Example

Initialization that Requires Computation

The following rules apply for complex initialization:

• The initialization should be performed in a separate subsystem.

• The initialization subsystem should have a name that indicates that
initialization is performed by the subsystem.

5-84

jc_0351: Methods of initialization

Complex initialization may be done at a local level (Example A), at a
global level (Example B), or a combination of local and global.

Example A

Example B

Rationale Workflow

Last
Changed

V2.0

Model
Advisor
Check

Not applicable

5-85

jc_0111: Direction of Subsystem

ID: Title jc_0111: Direction of Subsystem

Priority Strongly recommended

Scope J-MAAB

MATLAB
Versions

All

Prerequisites None

Description Subsystem must not be reversed.

Correct

Incorrect

5-86

jc_0111: Direction of Subsystem

Rationale Readability

Last
Changed

V2.0

Model
Advisor
Check

By Task > Modeling Standards for MAAB > Simulink > “Check
for direction of subsystem blocks”

5-87

jc_0111: Direction of Subsystem

5-88

6

Stateflow

• “Chart Appearance” on page 6-2

• “Stateflow Data and Operations” on page 6-20

• “Events” on page 6-39

• “Statechart Patterns” on page 6-43

• “Flowchart Patterns” on page 6-49

6 Stateflow®

Chart Appearance
• db_0123: Stateflow port names

• db_0129: Stateflow transition appearance

• db_0137: States in state machines

• db_0133: Use of patterns for Flowcharts

• db_0132: Transitions in Flowcharts

• jc_0501: Format of entries in a State block

• jc_0511: Setting the return value from a graphical function

• jc_0531: Placement of the default transition

• jc_0521: Use of the return value from graphical functions

6-2

db_0123: Stateflow port names

ID: Title db_0123: Stateflow port names

Priority Strongly recommended

Scope MAAB

MATLAB
Versions

All

Prerequisites None

Description The name of a Stateflow input or output should be the same as the
corresponding signal.

Exception: Reusable Stateflow blocks may have different port names.

Rationale • Readability

• Workflow

Last
Changed

V1.0

Model
Advisor
Check

By Task > Modeling Standards for MAAB > Stateflow > “Check
for mismatches between Stateflow ports and associated signal
names”

6-3

db_0129: Stateflow transition appearance

ID: Title db_0129: Stateflow transition appearance

Priority Strongly recommended

Scope MAAB

MATLAB
Versions

All

Prerequisites None

Description Transitions in Stateflow:

• Do not cross each other, if possible

• Are not drawn one upon the other

• Do not cross any states, junctions, or text fields

• Are allowed if transition is to an internal state

Transition labels may be visually associated to the corresponding
transition.

6-4

db_0129: Stateflow transition appearance

Correct

6-5

db_0129: Stateflow transition appearance

Incorrect

Rationale • Readability

• Workflow

Last
Changed

V2.0

Model
Advisor
Check

Not applicable

6-6

db_0137: States in state machines

ID: Title db_0137: States in state machines

Priority Mandatory

Scope MAAB

MATLAB
Versions

All

Prerequisites db_0149: Flowchart patterns for condition actions

Description In state machines:

• At least two exclusive states exist.

• A state cannot have only one substate.

• The initial state of a hierarchical level with exclusive states is clearly
defined by a default transition.

Rationale • Readability

• Workflow

• Verification and Validation

Last
Changed

V2.0

Model
Advisor
Check

By Task > Modeling Standards for MAAB > Sstateflow > “Check
for exclusive states, default states, and substate validity”

6-7

db_0133: Use of patterns for Flowcharts

ID: Title db_0133: Use of patterns for Flowcharts

Priority Strongly recommended

Scope MAAB

MATLAB
Versions

All

Prerequisites None

Description A Flowchart is built with the help of Flowchart patterns (for example,
if-then-else, for loop, and so on):

• The data flow is oriented from the top to the bottom. •

• Patterns are connected with empty transitions.

Rationale • Readability

• Workflow

• Verification and Validation

Last
Changed

V1.0

Model
Advisor
Check

Not applicable

6-8

db_0132: Transitions in Flowcharts

ID: Title db_0132: Transitions in Flowcharts

Priority Strongly recommended

Scope MAAB

MATLAB
Versions

All

Prerequisites None

Description The following rules apply to transitions in Flowcharts:

• Conditions are drawn on the horizontal.

• Actions are drawn on the vertical.

• Loop constructs are intentional exceptions to this rule.

• Transitions have a condition, a condition action, or an empty
transition.

Transition with Condition

Transition with Condition Action

6-9

db_0132: Transitions in Flowcharts

Empty Transition

Transition actions are not used in Flowcharts. Transition actions are
only valid when used in transitions between states in a state machine,
otherwise they are not activated because of the inherent dependency on
a valid state to state transition to activate them.

Transition Action

At every junction, except for the last junction of a flow diagram, exactly
one unconditional transition begins. Every decision point (junction)
must have a default path.

6-10

db_0132: Transitions in Flowcharts

Transitions with Comments

Rationale • Readability

• Workflow

• Verification and Validation

Last
Changed

V2.0

Model
Advisor
Check

By Task > Modeling Standards for MAAB > Stateflow > “Check
transition orientations in flow charts”

6-11

jc_0501: Format of entries in a State block

ID: Title jc_0501: Format of entries in a State block

Priority Recommended

Scope MAAB

MATLAB
Versions

All

Prerequisites None

Description A new line should be:

• Started after the entry (en), during (du), and exit (ex) statements.

• Started after the completion of an assignment statement “;”.

Correct

6-12

jc_0501: Format of entries in a State block

Incorrect

Failed to start a new line after en, du, and ex.

Incorrect

Failed to start a new line after the completion of an assignment
statement “;”.

Rationale Readability

Last
Changed

V2.0

Model
Advisor
Check

By Task > Modeling Standards for MAAB > Stateflow > “Check
for entry format in state blocks”

6-13

jc_0511: Setting the return value from a graphical
function

ID: Title jc_0511: Setting the return value from a graphical function

Priority Mandatory

Scope J-MAAB

MATLAB
Versions

All

Prerequisites None

Description The return value from a graphical function must be set in only one place.

Correct

Return value A is set in one place.

6-14

jc_0511: Setting the return value from a graphical
function

Incorrect

Return value A is set in multiple places.

Rationale • Workflow

• Code Generation

Last
Changed

V2.0

Model
Advisor
Check

By Task > Modeling Standards for MAAB > Stateflow > “Check
setting Stateflow graphical function return value”

6-15

jc_0531: Placement of the default transition

ID: Title jc_0531: Placement of the default transition

Priority Recommended

Scope J-MAAB

MATLAB
Versions

All

Prerequisites None

Description • Default transition is connected at the top of the state.

• The destination state of the default transition is put above the other
states in the same hierarchy.

Correct

• The default transition is connected at the top of the state.

• The destination state of the default transition is put above the other
states in the same hierarchy.

6-16

jc_0531: Placement of the default transition

Incorrect

• Default transition is connected at the side of the state (State 1).

• The destination state of the default transition is lower than the other
states in the same hierarchy (SubSt_off).

Rationale Readability

Last
Changed

V2.0

Model
Advisor
Check

By Task > Modeling Standards for MAAB > Stateflow > “Check
default transition placement in Stateflow charts”

6-17

jc_0521: Use of the return value from graphical
functions

ID: Title jc_0521: Use of the return value from graphical functions

Priority Recommended

Scope J-MAAB

MATLAB
Versions

All

Prerequisites None

Description The return value from a graphical function should not be used directly
in a comparison operation.

Correct

An intermediate variable is used in the conditional expression after
the assignment of the return value from the function temp_test to
the intermediate variable a.

6-18

jc_0521: Use of the return value from graphical
functions

Incorrect

Return value of the function temp_test is used in the conditional
expression.

Rationale Readability

Last
Changed

V2.0

Model
Advisor
Check

Not applicable

6-19

jc_0521: Use of the return value from graphical
functions

Stateflow Data and Operations
• na_0001: Bitwise Stateflow operators

• jc_0451: Use of unary minus on unsigned integers in
Stateflow

• na_0013: Comparison operation in Stateflow

• db_0122: Stateflow and Simulink interface signals and
parameters

• db_0125: Scope of internal signals and local auxiliary
variables

• jc_0481: Use of hard equality comparisons for floating
point numbers in Stateflow

• jc_0491: Reuse of variables within a single Stateflow
scope

• jc_0541: Use of tunable parameters in Stateflow

• db_0127: MATLAB commands in Stateflow

• jm_0011: Pointers in Stateflow

6-20

na_0001: Bitwise Stateflow operators

ID: Title na_0001: Bitwise Stateflow operators

Priority Strongly recommended

Scope MAAB

MATLAB
Versions

All

Prerequisites None

Description The bitwise Stateflow operators (&, |, and ^) should not be used in
Stateflow charts unless you want bitwise operations.

To enable bitwise operations,

1 Select File > Chart Properties .

2 Select Enable C-bit operations.

Correct

Use && and || for Boolean operation.

Use & and | for bit operation.

Incorrect

Use & and I for Boolean operation.

Rationale • Simulation

• Code Generation

Last
Changed

V2.0

Model
Advisor
Check

Not applicable

6-21

jc_0451: Use of unary minus on unsigned integers in
Stateflow

ID: Title jc_0451: Use of unary minus on unsigned integers in Stateflow

Priority Recommended

Scope MAAB

MATLAB
Versions

All

Prerequisites None

Description Do not perform unary minus on unsigned integers.

Correct

Incorrect

Rationale • Readability

• Workflow

• Code Generation

Last
Changed

V2.0

Model
Advisor
Check

By Task > Modeling Standards for MAAB > Stateflow > “Check
for use of tunable parameters in Stateflow”

6-22

na_0013: Comparison operation in Stateflow

ID: Title na_0013: Comparison operation in Stateflow

Priority Recommended

Scope MAAB

MATLAB
Versions

All

Prerequisites None

Description • Comparisons should be made only between variables of the same
data type.

• If comparisons are made between variables of different data types,
the variables need to be explicitly type cast to matching data types.

Correct

Same data type in “i” and “n”

Incorrect

Different data type in “i” and “d”

6-23

na_0013: Comparison operation in Stateflow

Correct

Do not make comparisons between unsigned integers and negative
numbers.

Incorrect

Rationale • Workflow

• Code Generation

Last
Changed

V2.0

Model
Advisor
Check

Not applicable

6-24

db_0122: Stateflow and Simulink interface signals
and parameters

ID: Title db_0122: Stateflow and Simulink interface signals and parameters

Priority Strongly recommended

Scope MAAB

MATLAB
Versions

All

Prerequisites None

Description A Chart uses strong data typing with Simulink and requires that you
select the Use Strong Data Typing with Simulink I/O parameter.

Rationale • Readability

• Workflow

• Verification and Validation

Last
Changed

V2.0

Model
Advisor
Check

By Task > Modeling Standards for MAAB > Stateflow > “Check
interface signals and parameters”

6-25

db_0125: Scope of internal signals and local auxiliary
variables

ID: Title db_0125: Scope of internal signals and local auxiliary variables

Priority Strongly recommended

Scope MAAB

MATLAB
Versions

All

Prerequisites None

Description Internal signals and local auxiliary variables are "Local data" in
Stateflow:

• All local data of a Stateflow block must be defined on the chart level
or below the Object Hierarchy.

• No local variables may exist on the machine level (that is, no
interaction should occur between local data in different charts).

• Parameters and constants are allowed at the machine level.

Correct

6-26

db_0125: Scope of internal signals and local auxiliary
variables

Incorrect

Rationale • Readability

• Workflow

• Verification and Validation

Last
Changed

V2.0

Model
Advisor
Check

By Task > Modeling Standards for MAAB > Stateflow > “Check
interface signals and parameters”

6-27

jc_0481: Use of hard equality comparisons for floating
point numbers in Stateflow

ID: Title jc_0481: Use of hard equality comparisons for floating point numbers
in Stateflow

Priority Recommended

Scope MAAB

MATLAB
Versions

All

Prerequisites None

Description • Do not use hard equality comparisons (Var1 == Var2) with two
floating-point numbers.

• If a hard comparison is required, a margin of error should be defined
and used in the comparison (LIMIT, in the example).

• Hard equality comparisons may be done between two integer data
types.

Correct

6-28

jc_0481: Use of hard equality comparisons for floating
point numbers in Stateflow

Incorrect

Rationale • Workflow

• Verification and Validation

• Code Generation

Last
Changed

V2.0

Model
Advisor
Check

Not applicable

6-29

jc_0491: Reuse of variables within a single Stateflow
scope

ID: Title jc_0491: Reuse of variables within a single Stateflow scope

Priority Recommended

Scope MAAB

MATLAB
Versions

All

Prerequisites None

Description The same variable should not have multiple meanings (usages) within
a single Stateflow scope.

Correct

Variable of loop counter must not be used other than loop counter.

6-30

jc_0491: Reuse of variables within a single Stateflow
scope

Incorrect

The meaning of the variable i changes from the index of the loop
counter to the sum of a+b

6-31

jc_0491: Reuse of variables within a single Stateflow
scope

Correct

tempVar is defined as local scope in both SubState_A and SubState_B.

Rationale • Readability

• Workflow

• Code Generation

Last
Changed

V2.0

6-32

jc_0491: Reuse of variables within a single Stateflow
scope

Model
Advisor
Check

Not applicable

6-33

jc_0541: Use of tunable parameters in Stateflow

ID: Title jc_0541: Use of tunable parameters in Stateflow

Priority Strongly recommended

Scope MAAB

MATLAB
Versions

All

Prerequisites None

Description Tunable parameters should be included in a Chart as inputs from the
Simulink model.

Correct

Incorrect

Rationale • Readability

• Workflow

• Code Generation

6-34

jc_0541: Use of tunable parameters in Stateflow

Last
Changed

V2.0

Model
Advisor
Check

By Task > Modeling Standards for MAAB > Stateflow > “Check
for use of tunable parameters in Stateflow”

6-35

db_0127: MATLAB commands in Stateflow

ID: Title db_0127: MATLAB commands in Stateflow

Priority Mandatory

Scope MAAB

MATLAB
Versions

All

Prerequisites None

Description The following rules apply to logic in Stateflow:

• MATLAB functions are not used.

• MATLAB instructions are not used.

• MATLAB operators are not used.

• Project-specific MATLAB functions are not used.

Incorrect

Rationale • Readability

• Workflow

6-36

db_0127: MATLAB commands in Stateflow

• Verification and Validation

• Code Generation

Last
Changed

V2.0

Model
Advisor
Check

Not applicable

6-37

jm_0011: Pointers in Stateflow

ID: Title jm_0011: Pointers in Stateflow

Priority Strongly recommended

Scope MAAB

MATLAB
Versions

All

Prerequisites None

Description In a Stateflow diagram, pointers to custom code variables are not
allowed.

Rationale • Readability

• Workflow

• Verification and Validation

• Code Generation

Last
Changed

V1.0

Model
Advisor
Check

Not applicable

6-38

jm_0011: Pointers in Stateflow

Events
• db_0126: Scope of events

• jm_0012: Event broadcasts

6-39

db_0126: Scope of events

ID: Title db_0126: Scope of events

Priority Mandatory

Scope MAAB

MATLAB
Versions

All

Prerequisites None

Description The following rules apply to events in Stateflow:

• All events of a Chart must be defined on the chart level or lower.

• There is no event on the machine level (i.e. there is no interaction
with local events between different charts).

Specifics

Rationale • Readability

• Workflow

• Verification and Validation

Last
Changed

V2.0

Model
Advisor
Check

By Task > Modeling Standards for MAAB > Stateflow > “Check
whether Stateflow events are defined at the chart level or
below”

6-40

jm_0012: Event broadcasts

ID: Title jm_0012: Event broadcasts

Priority Strongly recommended

Scope MAAB

MATLAB
Versions

All

Prerequisites db_0126: Scope of events

Description The following rules apply to event broadcasts in Stateflow:

• Directed event broadcasts are the only type of event broadcasts
allowed.

• The send syntax or qualified event names are used to direct the event
to a particular state.

• Multiple send statements should be used to direct an event to more
than one state.

Example Using Send Syntax

6-41

jm_0012: Event broadcasts

Example Using Qualified Event Names

Rationale • Readability

• Workflow

• Verification and Validation

• Code Generation

Last
Changed

V1.0

Model
Advisor
Check

Not applicable

6-42

jm_0012: Event broadcasts

Statechart Patterns
• db_0150: State machine patterns for conditions

• db_0151: State machine patterns for transition actions

6-43

db_0150: State machine patterns for conditions

ID: Title db_0150: State machine patterns for conditions

Priority Strongly recommended

Scope MAAB

MATLAB
Versions

All

Prerequisites None

Description The following patterns are used for conditions within Stateflow state
machines:

Equivalent
Functionality

State Machine Pattern

One condition:

(condition)

6-44

db_0150: State machine patterns for conditions

Equivalent
Functionality

State Machine Pattern

Up to three conditions,
short form:

(The use of different
logical operators in this
form is not allowed. Use
subconditions instead.)

(condition1 &&
condition2)
(condition1 ||
condition2)

Two or more conditions,
multiline form:

A subcondition is a set of
logical operations, all of
the same type, enclosed
in parentheses.

(The use of different
operators in this form
is not allowed. Use
subconditions instead.)

(condition1 ...
&& condition2 ...
&& condition3)
(condition1 ...
|| condition2 ...
|| condition3)

Rationale • Readability

• Workflow

6-45

db_0150: State machine patterns for conditions

• Verification and Validation

Last
Changed

V2.0

Model
Advisor
Check

Not applicable

6-46

db_0151: State machine patterns for transition actions

ID: Title db_0151: State machine patterns for transition actions

Priority Strongly recommended

Scope MAAB

MATLAB
Versions

All

Prerequisites None

Description The following patterns are used for transition actions within Stateflow
state machines:

Equivalent Functionality State Machine Pattern

One transition action:

action;

Two or more transition
actions, multiline form:

(Two or more transition
actions in one line are not
allowed.)

action1;
action2;
action3;

6-47

db_0151: State machine patterns for transition actions

Rationale • Readability

• Workflow

• Verification and Validation

Last
Changed

V1.0

Model
Advisor
Check

Not applicable

6-48

db_0151: State machine patterns for transition actions

Flowchart Patterns
• db_0148: Flowchart patterns for conditions

• db_0149: Flowchart patterns for condition actions

• db_0134: Flowchart patterns for If constructs

• db_0159: Flowchart patterns for case constructs

• db_0135: Flowchart patterns for loop constructs

The preceding guidelines illustrate sample patterns used in flow charts.
As such, they would normally be part of a much larger Stateflow
diagram.

6-49

db_0148: Flowchart patterns for conditions

ID: Title db_0148: Flowchart patterns for conditions

Priority Strongly recommended

Scope MAAB

MATLAB
Versions

All

Prerequisites None

Description Use the following patterns for conditions within Stateflow Flowcharts:

Equivalent Functionality Flowchart Pattern

One condition:

[condition]

Up to three conditions, short
form:

(The use of different logical
operators in this form is not
allowed. Use subconditions
instead.)

[condition1
&& condition2
&& condition3]
[condition1
|| condition2
|| condition3]

6-50

db_0148: Flowchart patterns for conditions

Equivalent Functionality Flowchart Pattern

Two or more conditions,
multiline form:

(The use of different logical
operators in this form is not
allowed. Use subconditions
instead.)

[condition1 ...
&& condition2 ...
&& condition3]
[condition1 ...
|| condition2 ...
|| condition3]

Conditions with subconditions:

(The use of different
logical operators to connect
subconditions is not allowed.
The use of brackets is
mandatory.)

[(condition1a
|| condition1b) ...
&& (condition2a
|| condition2b) ...
&& (condition3)]
[(condition1a
&& condition1b) ...
|| (condition2a
&& condition2b) ...
|| (condition3)]

6-51

db_0148: Flowchart patterns for conditions

Equivalent Functionality Flowchart Pattern

Conditions that are visually
separated:

(This form may be combined
with the preceding patterns.)

[condition1
&& condition2]
[condition1
|| condition2]

Rationale • Readability

• Workflow

• Verification and Validation

Last
Changed

V2.0

Model
Advisor
Check

Not applicable

6-52

db_0149: Flowchart patterns for condition actions

ID: Title db_0149: Flowchart patterns for condition actions

Priority Strongly recommended

Scope MAAB

MATLAB
Versions

All

Prerequisites None

Description You should use the following patterns for condition actions within
Stateflow Flowcharts:

Equivalent Functionality Flowchart Pattern

One condition action:

action;

6-53

db_0149: Flowchart patterns for condition actions

Equivalent Functionality Flowchart Pattern

Two or more condition actions, multiline
form:

(Two or more condition actions in one line
are not allowed.)

action1; ...
action2; ...
action3; ...

Condition actions, that are visually
separated:

(This form may be combined with the
preceding patterns.)

action1a;
action1b;
action2;
action3;

Rationale • Readability

• Workflow

• Verification and Validation

6-54

db_0149: Flowchart patterns for condition actions

Last
Changed

V1.0

Model
Advisor
Check

Not applicable

6-55

db_0134: Flowchart patterns for If constructs

ID: Title db_0134: Flowchart patterns for If constructs

Priority Strongly recommended

Scope MAAB

MATLAB
Versions

All

Prerequisites db_0148: Flowchart patterns for conditions

db_0149: Flowchart patterns for condition actions

Description Use the following patterns for If constructs within Stateflow Flowcharts:

Equivalent Functionality Flowchart Pattern

if then

if (condition){ action;
}

6-56

db_0134: Flowchart patterns for If constructs

Equivalent Functionality Flowchart Pattern

if then else

if (condition){ action1;
}
else {

action2;
}

if then else if

if (condition1){ action1;
}
else if (condition2) { action2;
}
else if (condition3){
__action3;
}
else {

action4;
}

6-57

db_0134: Flowchart patterns for If constructs

Equivalent Functionality Flowchart Pattern

Cascade of if then

if (condition1){ action1;
if (condition2){ action2;

if (condition3){ action3;
}

}
}

Rationale • Readability

• Workflow

• Verification and Validation

Last
Changed

V1.0

Model
Advisor
Check

Not applicable

6-58

db_0159: Flowchart patterns for case constructs

ID: Title db_0159: Flowchart patterns for case constructs

Priority Strongly recommended

Scope MAAB

MATLAB
Versions

All

Prerequisites db_0148: Flowchart patterns for conditions

db_0149: Flowchart patterns for condition actions

6-59

db_0159: Flowchart patterns for case constructs

Description Use the following patterns must be used for case constructs within
Stateflow Flowcharts:

Equivalent Functionality Flowchart Pattern

case with exclusive selection

selection = ...;
switch (selection)
{
case 1:

action1;
break;
case 2:

action2;
break;
case 3:

action3;
break;
default:

action4;
}

6-60

db_0159: Flowchart patterns for case constructs

Equivalent Functionality Flowchart Pattern

case with exclusive conditions

c1 = condition1;
c2 = condition2;
c3 = condition3;
if (c1 && !c2 && !c3)
{
action1;
}
elseif (!c1 && c2 && !c3)
{
action2;
}
elseif (!c1 && !c2 && c3)
{
action3;
}
else
{
action4;
}

Rationale • Readability

• Workflow

• Verification and Validation

Last
Changed

V1.0

6-61

db_0159: Flowchart patterns for case constructs

Model
Advisor
Check

Not applicable

6-62

db_0135: Flowchart patterns for loop constructs

ID: Title db_0135: Flowchart patterns for loop constructs

Priority Recommended

Scope MAAB

MATLAB
Versions

All

Prerequisites db_0148: Flowchart patterns for conditions

db_0149: Flowchart patterns for condition actions

Description Use the following patterns to create Loops within Stateflow Flowcharts:

Equivalent Functionality Flowchart Pattern

for loop

for (index=0;
index<number_of_loops;
index++)
{
action;
}

6-63

db_0135: Flowchart patterns for loop constructs

Equivalent Functionality Flowchart Pattern

while loop

while (condition)
{
action;
}

do while loop

do
{
action;
}
while (condition);

6-64

db_0135: Flowchart patterns for loop constructs

Rationale • Readability

• Workflow

• Verification and Validation

Last
Changed

V1.0

Model
Advisor
Check

Not applicable

6-65

db_0135: Flowchart patterns for loop constructs

6-66

A

Recommendations for
Automation Tools

These recommendations are for companies who develop tools that automate
checking of the style guidelines. The MathWorks Automotive Advisory Board
(MAAB) developed these recommendations for tool vendors who create tools
developed with MathWorks tools that check models against these guidelines.
To provide maximum information to potential users of the tools, the MAAB
strongly recommends that tool vendors provide a compliance matrix that
is easily accessible while the tool is running. This information should be
available without a need to purchase the tool.

The compliance matrix should include the following information:

• Version of the guidelines that are checked – shall include the complete
title, as found on the title page of this document.

Include the MAAB Style Guidelines Title and Version document number.

• Table consisting of the following information for each guideline:

- Guideline ID

- Guideline title

- Level of compliance

- Detail

The guideline ID and title shall be exactly as included in this document. The
level of compliance shall be one of the following:

A Recommendations for Automation Tools

Correction The tool checks and automatically or semiautomatically
corrects the noncompliance.

Check The tool checks and flags noncompliance. It is the developer’s
responsibility to make the correction.

Partial The tool checks part of the guideline. The detail section
should clearly identify what is and what is not checked.

None The tool does not check the guideline. The MAAB
recommends that the vendor provide a recommendation of
how to manually check guidelines that the tool does not
check.

A-2

B

Guideline Writing

Guidelines with the following characteristics are easier to understand and
use. At a minimum, when writing a new guideline, it should be

Understandable and
unambiguous

A guideline’s description should be precise,
clearly worded, concise, and should define a
characteristic of a model (or part of a model)
that a checking tool can evaluate. Use the words
"must," "shall," "should," and "may" carefully;
they have distinct meanings that are important
for model developers and model checkers (human
and automated). It is helpful to the reader if the
guideline author describes how the conforming
state can be reached (for example, by selecting
particular options or clicking a certain button).
Examples, counterexamples, pictures, diagrams,
and screen shots are also helpful and are
encouraged.

Minimize the allowable exceptions to a guideline;
exceptions blur a guideline and make it harder
to apply. If a guideline has many allowable
exceptions, you may be trying to cover too many
characteristics with one guideline. (See Minimal,
following, for some solutions.)

Easy to find

Minimal A guideline should address only one model
characteristic at a time. Guidelines should
be atomic. For example, instead of writing a
big guideline that addresses error prevention
and readability at the same time, make

B Guideline Writing

two guidelines, one that addresses error
prevention and one that addresses readability. If
appropriate, make one guideline a prerequisite
of the other. Also, big guidelines are more likely
than small guidelines to require compromises
for wide acceptance. Big guidelines may end up
being weaker, less specific, and less beneficial.
Small, focused guidelines are less likely to
change due to compromise and easier adoption.

B-2

C

Flowchart Reference

Use the patterns that appear in this appendix for if-then-else-if constructs
within Stateflow Flowcharts.

C Flowchart Reference

Straight Line Flow Chart Pattern Curved Line Flow Chart Pattern

if then

if then else

C-2

Flowchart Reference

Straight Line Flow Chart Pattern Curved Line Flow Chart Pattern

if then else if

Cascade of if then

C-3

C Flowchart Reference

The following patterns are used for case constructs within Stateflow
Flowcharts:

Straight Line Flow Chart Pattern Curved Line Flow Chart Pattern

case with exclusive selection

C-4

Flowchart Reference

Straight Line Flow Chart Pattern Curved Line Flow Chart Pattern

case with exclusive conditions

C-5

C Flowchart Reference

The following patterns are used for for loops within Stateflow Flowcharts:

Straight Line Flow Chart Pattern Curved Line Flow Chart Pattern

for loop

Straight Line Flow Chart Pattern Curved Line Flow Chart Pattern

while loop

C-6

Flowchart Reference

Straight Line Flow Chart Pattern Curved Line Flow Chart Pattern

do while loop

C-7

C Flowchart Reference

The following patterns are alternately used for If-then-else-if constructs
within Stateflow Flowcharts:

Straight Line Flow Chart Pattern Alternate Straight Line Flow Chart Pattern

if then else if

C-8

Flowchart Reference

Straight Line Flow Chart Pattern Alternate Straight Line Flow Chart Pattern

Cascade of if then

C-9

C Flowchart Reference

C-10

D

Background Information on
Basic Blocks and Signals

• “Basic Blocks” on page D-2

• “Signals and Signal Labels” on page D-3

D Background Information on Basic Blocks and Signals

Basic Blocks
This document uses the term basic blocks to refer to blocks built into the
Simulink block libraries. The following table lists some examples of basic
blocks.

Basic Blocks

Block Example

Inport

Constant

Gain

Sum

Switch

Saturation

Abs

D-2

Signals and Signal Labels

Signals and Signal Labels
Signals may be scalars, vectors, or busses. They may carry data or control
flows.

You use signal labels to make model functionality more understandable from
the Simulink diagram. You can also use them to control the variable names
used in simulation and code generation. Enter signal labels only once (at
the point of signal origination). Often, you may want to also display the
signal name elsewhere in the model. In these cases, the signal name should
be inherited until the signal is functionally transformed. (Passing a signal
through an integrator is functionally transforming. Passing a signal through
an Inport into a nested subsystem is not.) Once a named signal is functionally
transformed, associate a new name with it.

Unless explicitly stated otherwise, the guidelines in “Signals” on page 5-30
apply to all types of signals.

For more information about the representation of signals in Simulink models,
see “Working with Signals” in the Simulink documentation.

D-3

D Background Information on Basic Blocks and Signals

D-4

Glossary

MAAB Glossary

Actions
Actions are part of Stateflow diagram execution. The action can be
executed as part of a transition from one state to another, or depending
on the activity status of a state. Transitions can have condition actions
and transition actions. For example,

States can have entry, during, exit, and, on event_name actions. For
example,

If you enter the name and backslash followed directly by an action or
actions (without the entry keyword), the actions are interpreted as entry
actions. This shorthand is useful if you are specifying only entry actions.

The action language defines the categories of actions you can specify
and their associated notations. An action can be a function call, an
event to be broadcast, a variable to be assigned a value, and so on.

Glossary-1

MAAB Glossary

Action Language
Sometimes you want actions to take place as part of Stateflow diagram
execution. The action can be executed as part of a transition from one
state to another, or it can depend on the activity status of a state.
Transitions can have condition actions and transition actions. States
can have entry, during, exit, and, on event_name actions. An action
can be a function call, an event to be broadcast, a variable to be assigned
a value, etc.

The action language defines the categories of actions you can specify and
their associated notations. Violations of the action language notation
are flagged as errors by the parser. This section describes the action
language notation rules.

Chart Instance
A chart instance is a link from a Stateflow model to a chart stored
in a Simulink library. A chart in a library can have many chart
instances. Updating the chart in the library automatically updates all
the instances of that chart.

Condition
A condition is a Boolean expression to specify that a transition occur,
given that the specified expression is true. For example,

The action language defines the notation to define conditions associated
with transitions.

Connective Junction
Connective junctions are decision points in the system. A connective
junction is a graphical object that simplifies Stateflow diagram

Glossary-2

MAAB Glossary

representations and facilitates generation of efficient code. Connective
junctions provide alternative ways to represent the system behavior you
want. This example shows how connective junctions (displayed as small
circles) are used to represent the flow of an if code structure.

Or the equivalent squared style

Glossary-3

MAAB Glossary

Name Button Icon Description

Connective
junction

One use of a Connective junction is to
handle situations where transitions
out of one state into two or more states
are taken based on the same event but
guarded by different conditions.

Data
Data objects store numerical values for reference in the Stateflow
diagram.

Defining Data
A state machine can store and retrieve data that resides internally in
its own workspace. It can also access data that resides externally in the
Simulink model or application that embeds the state machine. When
creating a Stateflow model, you must define any internal or external
data referenced by the state machine’s actions.

Data Dictionary
The data dictionary is a database where Stateflow diagram information
is stored. When you create Stateflow diagram objects, the information
about those objects is stored in the data dictionary, once you save the
Stateflow diagram.

Decomposition
A state has decomposition when it consists of one or more substates.
A Stateflow diagram that contains at least one state also has
decomposition. Representing hierarchy necessitates some rules around
how states can be grouped in the hierarchy. A superstate has either
parallel (AND) or exclusive (OR) decomposition. All substates at a
particular level in the hierarchy must be of the same decomposition.

Parallel (AND) State Decomposition. Parallel (AND) state
decomposition is indicated when states have dashed borders. This
representation is appropriate if all states at that same level in the
hierarchy are active at the same time. The activity within parallel
states is essentially independent.

Glossary-4

MAAB Glossary

Exclusive (OR) State Decomposition. Exclusive (OR) state
decomposition is represented by states with solid borders. Exclusive
(OR) decomposition is used to describe system modes that are mutually
exclusive. Only one state, at the same level in the hierarchy, can be
active at a time.

Default Transition
Default transitions are primarily used to specify which exclusive (OR)
state is to be entered when there is ambiguity among two or more
neighboring exclusive (OR) states. For example, default transitions
specify which substate of a superstate with exclusive (OR) decomposition
the system enters by default in the absence of any other information.
Default transitions are also used to specify that a junction should be
entered by default. A default transition is represented by selecting the
default transition object from the toolbar and then dropping it to attach
to a destination object. The default transition object is a transition with
a destination but no source object.

Name Button Icon Description

Default
transition

Use a Default transition to indicate,
when entering this level in the
hierarchy, which state becomes active
by default.

Events
Events drive the Stateflow diagram execution. Define all events that
affect the Stateflow diagram. The occurrence of an event causes the
status of the states in the Stateflow diagram to be evaluated. The
broadcast of an event can trigger a transition to occur and/or can trigger
an action to be executed. Events are broadcast in a top-down manner
starting from the event’s parent in the hierarchy.

Finite State Machine
A finite state machine (FSM) is a representation of an event-driven
system. FSMs are also used to describe reactive systems. In an
event-driven or reactive system, the system transitions from one mode
or state, to another prescribed mode or state, provided that the condition
defining the change is true.

Glossary-5

MAAB Glossary

Flow Graph
A flow graph is the set of Flowcharts that start from a transition
segment that, in turn, starts from a state or a default transition
segment.

Flowchart (also known as Flow Path)
A Flowchart is an ordered sequence of transition segments and junctions
where each succeeding segment starts on the junction that terminated
the previous segment.

Flow Subgraph
A flow subgraph is the set of Flowcharts that start on the same
transition segment.

Hierarchy
Using hierarchy you can organize complex systems by placing states
within other higher-level states. A hierarchical design usually reduces
the number of transitions and produces neat, more manageable
diagrams.

History Junction
A History Junction specifies the destination substate of a transition
based on historical information. If a superstate has a History Junction,
the transition to the destination substate is defined to be the substate
that was most recently visited. The History Junction applies to the level
of the hierarchy in which it appears.

Name Button Icon Description

History
Junction

Use a History Junction to indicate, when
entering this level in the hierarchy, that
the last state that was active becomes
the next state to be active.

Inner Transitions
An inner transition is a transition that does not exit the source state.
Inner transitions are most powerful when defined for superstates with
XOR decomposition. Use of inner transitions can greatly simplify a
Stateflow diagram.

Glossary-6

MAAB Glossary

Library Link
A library link is a link to a chart that is stored in a library model in
a Simulink block library.

Library Model
A Stateflow library model is a Stateflow model that is stored in a
Simulink library. You can include charts from a library in your model
by copying them. When you copy a chart from a library into your model,
Stateflow does not physically include the chart in your model. Instead,
it creates a link to the library chart. You can create multiple links to a
single chart. Each link is called a chart instance. When you include a
chart from a library in your model, you also include its state machine.
A Stateflow model that includes links to library charts has multiple
state machines. When Stateflow simulates a model that includes charts
from a library model, it includes all charts from the library model even
if there are links to only some of its models. However, when Stateflow
generates a stand-alone or Real-Time Workshop® target, it includes only
those charts for which there are links. A model that includes links to a
library model can be simulated only if all charts in the library model are
free of parse and compile errors.

Machine
A machine is the collection of all Stateflow blocks defined by a Simulink
model exclusive of chart instances (library links). If a model includes
any library links, it also includes the state machines defined by the
models from which the links originate.

Nonvirtual Block
Blocks that perform a calculation, such as a Gain block.

Notation
A notation defines a set of objects and the rules that govern the
relationships between those objects. Stateflow notation provides a
common language to communicate the design information conveyed by a
Stateflow diagram. Stateflow notation consists of:

• A set of graphical objects

• A set of nongraphical text-based objects

• Defined relationships between those objects

Glossary-7

MAAB Glossary

Parallelism
A system with parallelism can have two or more states that can be
active at the same time. The activity of parallel states is independent.
Parallelism is represented with a parallel (AND) state decomposition.

Real-Time System
A system that uses actual hardware to implement algorithms, for
example, digital signal processing or control applications.

Real-Time Workshop
Real-Time Workshop software includes an automatic C language code
generator for Simulink. It produces C code directly from Simulink block
diagram models and automatically builds programs that can be run in
real-time in a variety of environments.

Real-Time Workshop Target
An executable built from code generated by the Real-Time Workshop
product.

S-Function
A customized Simulink block written in C or M-code. S-functions
written in C can be inlined in the Real-Time Workshop software. When
using Simulink together with Stateflow for simulation, Stateflow
generates an S-function (MEX-file) for each Stateflow machine to
support model simulation. This generated code is a simulation target
and is called the S-Fun target within Stateflow.

Signal propagation
Process used by Simulink to determine attributes of signals and blocks,
such as data types, labels, sample time, dimensionality, and so on, that
are determined by connectivity.

Signal source
The signal source is the block of origin for a signal. The signal source
may or may not be the true source.

Simulink
Simulink is a software package for modeling, simulating, and analyzing
dynamic systems. It supports linear and nonlinear systems, modeled
in continuous time, sampled time, or a hybrid of the two. Systems can

Glossary-8

MAAB Glossary

also be multirate, that is, have different parts that are sampled or
updated at different rates.

Simulink allows you to represent systems as block diagrams that you
build using your mouse to connect blocks and your keyboard to edit
block parameters. Stateflow is part of this environment. The Stateflow
block is a masked Simulink model. Stateflow builds an S-function that
corresponds to each Stateflow machine. This S-function is the agent
Simulink interacts with for simulation and analysis.

The control behavior that Stateflow models complements the algorithmic
behavior modeled in Simulink block diagrams. By incorporating
Stateflow diagrams into Simulink models, you can add event-driven
behavior to Simulink simulations. You create models that represent
both data and control flow by combining Stateflow blocks with the
standard Simulink blockset. These combined models are simulated
using Simulink.

State
A state describes a mode of a reactive system. A reactive system has
many possible states. States in a Stateflow diagram represent these
modes. The activity or inactivity of the states dynamically changes
based on events and conditions.

Every state has hierarchy. In a Stateflow diagram consisting of a
single state, that state’s parent is the Stateflow diagram itself. A state
also has history that applies to its level of hierarchy in the Stateflow
diagram. States can have actions that are executed in a sequence based
upon action type. The action types are: entry, during, exit, or on
event_name actions.

Name Button Icon Description

State Use a state to depict a mode of the
system.

Stateflow Block
The Stateflow block is a masked Simulink model and is equivalent to an
empty, untitled Stateflow diagram. Use the Stateflow block to include a
Stateflow diagram in a Simulink model.

Glossary-9

MAAB Glossary

The control behavior that Stateflow models complements the
algorithmic behavior modeled in Simulink block diagrams. By
incorporating Stateflow blocks into Simulink models, you can add
complex event-driven behavior to Simulink simulations. You create
models that represent both data and control flow by combining Stateflow
blocks with the standard Simulink and toolbox block libraries. These
combined models are simulated using Simulink.

Stateflow Debugger
Use the Stateflow Debugger to debug and animate your Stateflow
diagrams. Each state in the Stateflow diagram simulation is evaluated
for overall code coverage. This coverage analysis is done automatically
when the target is compiled and built with the debug options. The
Debugger can also be used to perform dynamic checking. The Debugger
operates on the Stateflow machine.

Stateflow Diagram
Using Stateflow, you create Stateflow diagrams. A Stateflow diagram is
also a graphical representation of a finite state machine where states
and transitions form the basic building blocks of the system.

Stateflow Explorer
Use the Stateflow Explorer to add, remove, and modify data, event,
and target objects.

Stateflow Finder
Use the Finder to display a list of objects based on search criteria that
you specify. You can directly access the properties dialog box of any
object in the search output display by clicking on that object.

Substate
A state is a substate if it is contained by a superstate.

Glossary-10

MAAB Glossary

Superstate
A state is a superstate if it contains other states, called substates.

Target
An executable program built from code generated by Stateflow or
Real-Time Workshop software.

Top-down Processing
Top-down processing refers to the way in which Stateflow processes
states. In particular, Stateflow processes superstates before states.
Stateflow processes a state only if its superstate is activated first.

Transition
A transition describes the circumstances under which the system moves
from one state to another. Either end of a transition can be attached to
a source and a destination object. The source is where the transition
begins and the destination is where the transition ends. It is often the
occurrence of some event that causes a transition to take place.

Transition Path
A transition path is a Flowchart that starts and ends on a state.

Glossary-11

MAAB Glossary

Transition Segment
A transition segment is a single directed edge on a Stateflow diagram.
Transition segments are sometimes loosely referred to as transitions.

Tunable parameters
A tunable parameter is a parameter that can be adjusted in the model
and in generated code.

True Source
The true source is the block which creates a signal. The true source is
different from the signal source because the signal source may be a
simple routing block such as a Demux block.

Virtual Block
When creating models, be aware that Simulink blocks fall into two
basic categories: nonvirtual and virtual blocks. Nonvirtual blocks play
an active role in the simulation of a system. If you add or remove a
nonvirtual block, you change the model’s behavior. Virtual blocks, by
contrast, play no active role in the simulation. They help to organize
a model graphically. Some Simulink blocks can be virtual in some
circumstances and nonvirtual in others. Such blocks are called
conditionally virtual blocks. The following table lists Simulinks virtual
and conditionally virtual blocks.

Block Name Condition Under Which Block Is Virtual

Bus Selector Virtual if input bus is virtual

Demux Always virtual

Enable Virtual unless connected directly to an Outport block

From Always virtual

Goto Always virtual

Goto Tag
Visibility

Always virtual

Ground Always virtual

Inport Virtual when the block resides within any subsystem
block (conditional or not), and does not reside in the
root (top-level) Simulink window.

Glossary-12

MAAB Glossary

Block Name Condition Under Which Block Is Virtual

Mux Always virtual

Outport Virtual when the block resides within any subsystem
block (conditional or not), and does not reside in the
root (top-level) Simulink window.

Selector Virtual except in matrix mode

Signal
Specification

Always virtual

Subsystem Virtual unless the block is conditionally executed
and/or the block’s Treat as Atomic Unit option is
selected.

Terminator Always virtual

Trigger Virtual if the Outport port is not present.

Virtual Scrollbar
Using a virtual scrollbar, you can set a value by scrolling through a list
of choices. When you move the mouse over a menu item with a virtual
scrollbar, the cursor changes to a line with a double arrowhead. Virtual
scrollbars are either vertical or horizontal. The direction is indicated by
the positioning of the arrowheads. Drag the mouse either horizontally
or vertically to change the value.

Glossary-13

	toc
	Introduction
	Presentation of Guidelines Hosted by The MathWorks
	Motivation
	Guideline Template
	Guideline ID
	Guideline Title
	Priority
	Scope
	MATLAB Versions
	Prerequisites
	Description
	Rationale
	Last Change
	Model Advisor Check

	Document Usage

	Naming Conventions
	General Guidelines
	Model Content

	Model Architecture
	Simulink and Stateflow Partitioning
	Subsystem Hierarchies
	J-MAAB Model Architecture Decomposition

	Model Configuration Options
	Model Configuration Options

	Simulink
	Diagram Appearance
	Signals
	Block Usage
	Block Parameters
	Simulink Patterns

	Stateflow
	Chart Appearance
	Stateflow Data and Operations
	Events
	Statechart Patterns
	Flowchart Patterns

	Recommendations for Automation Tools
	Guideline Writing
	Flowchart Reference
	Background Information on Basic Blocks and Signals
	Basic Blocks
	Signals and Signal Labels

	MAAB Glossary

	tables
	Blocks that You Can Place at any Model Level
	Basic Blocks

